定電圧電源基板 製作マニュアル

·正出力定電圧電源基板(TYPE-G)

<注意>

本キットをつかって生じた感電、火災等の一切のトラブルについては、当方は責任を負いませんのでご了承ください。また、基板、回路図、マニュアル等の著作権は放棄していませんので、その一部あるいは全体を無断で第3者に対して使用することはできません。

1. はじめに

この電源基板はディスクリート回路構成による差動増幅型の定電圧基板です。部品点数をできるだけ抑えた 回路構成になっているため製作難易度も低くなっています。それでいて良好な性能を有していますので、色々 な用途につかえると思います。 とくに DAC9018D などの大容量の 3.3V 電源が使われる状況を想定して、出 カ段のトランジスタは外付けできるようにしています。また液晶表示との接続も考えて 5V 出力端子もあります。

正出力定電圧電源(TYPE-G)

2. 主な仕様

基板名	サイズ	出力	平滑回路	外部 TR 接続	回路構成
正出力定電圧電源 (TYPE-G)	4700 × 1700mil 119.4 × 43.2mm	正×2	有り	可	ディスクリ + 3端子レギュレータ

3. 基板の説明

3-1. 正出力定電圧電源基板(TYPE-G)

(1)端子の機能図

表 端子機能

No	機能	説明
P1	AC1	トランス入力(AC1)
P2	AC2	トランス入力(AC2)
P3	GND	電源 GND
P4	Vcc	正電圧出力 1(+5V など)
P5	GND	LED(-)
P6	Vdd	正電圧出力 2(+3.3V など)

(2)回路定数

設計例:正出力電圧 1(vcc)=5V、正出力電圧 2(Vdd)=3.3V 基準電圧に TL431A を使用

トランス入力(8-0V RA40-144を想定)

表 部品表(正出力定電圧電源基板 TYPE-G)

	亚口	+8+4	/ _ + *	加米	
品名	番号	規格	仕様	個数	
抵抗	R1	金属被膜(1/4W)	1kΩ	1	
	R2	金属被膜(1/4W)	$2k\Omega$	1	
	R3	金属被膜(1/4W)	220Ω	1	
可変抵抗	VR1	1回転サーメット	2k Ω	1	
コンデンサ	C1-4	電解コンデンサ	1000uF/25V	4	大容量品も可
	C5	フィルムコンデンサ	100pF	1	なくてもよい
	C6	電解コンデンサ	1000uF/25V	1	大容量品も可
	C7	電解コンデンサ	100uF/25V	1	大容量品も可
	Ср	チップセラミック	0.1uF	2	2012 サイズ
ダイオード	D1-4	シリコン整流ダイオード	200V2A 程度	4	
	D5	なし	-	-	IC1(TL431A)を使用す
					る場合は不要
トランジスタ	J1,2	N-FET	2SK117(GR)(*1)	2	2SK30A 等でも可
	Q1,2	NPN 小電力 TR	2SC1815	2	
	Q3,4	PNP 小電力 TR	2SA1015	2	
	Q5	NPN 小電力 TR	2SC1815	1	
	Q6	NPN 電力 TR	TIP31C など	1	外付け
IC	IC1	シャントレギュレータ	TL431A	1	(D5 を実装する場合は
					TL431A は実装不可)
	IC2	3端子レギュレータ	7805	1	その他に電圧品でも可

^(*1)ランクは GR あるいはYを使用してください。BL ランクでは電流が流れすぎます。

(3)出力電圧の設定方法について

本基板の電源には基準電圧源としてシャントレギュレータ(TL431A)あるいはツエナーダイオードのどちらかを使用することが可能です。

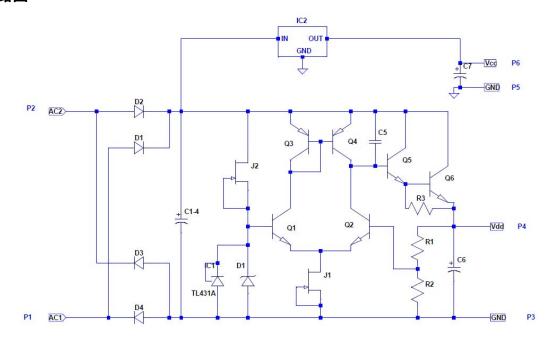
(i)TL431A を使用する場合(上記の部品表)

TL431A は 2.5V の基準電圧源になりますから、下記式で出力電圧の設定ができます。

正電圧出力(Vdd) = 2.5 × (R1+R2+VR)/(R2+VR)

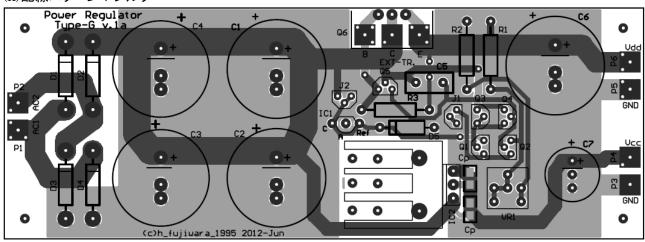
ここで R1+R2+VR は数 $k\Omega \sim 50k\Omega$ 程度の値になるように設定します。

(ii)ツエナーダイオードを使用する場合

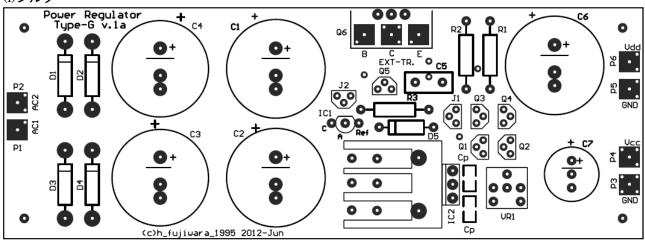

ツエナー電圧をEとした場合

正電圧出力 $(Vdd) = E \times (R1+R2+VR)/(R2+VR)$

となります。また同様に R1+R2+VR の値は数 $k\Omega \sim 50k\Omega$ 程度の値になるように設定します。


なおツエナーダイオードを基準電圧源として用いる場合は ${
m TL431A(IC1)}$ を実装してはいけません。ツエナーダイオードに使用できる電圧範囲は下限は $2.5{
m V}$ 程度、上限は1次側の電圧から $4{
m V}$ 程度の電圧を差し引いた値にすればいいでしょう。 $5{
m V}$ 出力電圧とするなら $2{
m V}$ 程度が使いやすい範囲でしょう。

4. 回路図


5. 基板パターン

(ii)配線パターン+シルク

v.1 では R3 のシルクが無いので上図を参照の上、R3 を取り付けてください。

(i)シルク

v.1 では R3 のシルクが無いので上図を参照の上、R3 を取り付けてください。

6. 補足

(1)FETトランジスタの Idss(2SK117)については下表のようになります。この基板では FET は定電流源として用いますが、 $1\sim$ 数 mA が適切なので、Yあるいは GR ランクを用います。

ランク	Y	GR	BL
Idss	1.2-3.0mA	2.6-6.5mA	6-14mA

(2)出カトランジスタ(Q6)

外付けとして放熱性の高いケースや大型の放熱板にとりつけます。

7. 編集記録

2012.7.5 R1

(以上)