
CP/M-68K™
Operating System

Programmer's Guide

IQ

DIGITAL
RESEARCH

CP/M-68K"
Operating System

Programmer's Guide

COPYRIGHT

Copyright © 1983 by Digital Research. All rights reserved. No part of this publication

may be reproduced, transmitted, transcribed, stored in a retrieval System, or translated

into any language or Computer language, in any form or by any means, electronic,

mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written

permissionof Digital Research, Post Office Box 579, PacificGrove, California, 93950.

This documentation is, however, tutorial in nature. Thus, the reader is granted permis-

sion to include the example programs, either in whole or in part, in his or her own

programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the Contents

hereof and specifically disclaims any implied warranties of merchantability or fitness for

any particular purpose. Further, Digital Research reserves the right to revise this publi

cation and to make changes from time to time in the content hereof without Obligation

of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M, CP/M-86, and CP/NET are registered trademarks of Digital Research. AS68,

AR68, Concurrent CP/M-86, CP/M-68K, CP/M-80, DDT-68K, LO68, MP/M-80,

MP/M-86, NM68, SENDC68, and SIZE68 are trademarks of Digital Research.

Motorola is a registered trademark of Motorola Inc. Unix is a registered trademark of

Bell Laboratories. IBM Personal Computer is a tradename of International Business

Machines.

The CP/M-68K Operating System Programmer's Guide was prepared using the Digital

Research TEX Text Formatter and printed in the United States of America.

Second Edition: June 1983

Foreword

CP/M-68K™ is a single-user operating System designed for the Motorola* MC68000

or a compatible 68000 microprocessor. CP/M-68K requires a minimum of 64K bytes

of random access memory (RAM) to run its base-level System, which contains the

following CP/M® commands and Utilities:

■ CP/M Built-in Commands:

DIR

DIRS

ERA

REN

SUBMIT

TYPE

USER

■ Standard CP/M Utilities:

DDT-68K™

ED

PIP

STAT

■ Programming Utilities:

Archive (AR68)

DUMP

Relocation (RELOC)

SIZE68

SENDC68

■ Programming Tools

Assembler (AS68)

Linker (LO68)

C Compiler*

C Preprocessor*

* Described in the C Language Programming Guide for CP/M-68K.

CP/M-68K requires a minimum of 128K bytes of RAM to run the programming tools

distributed with CP/M-68K.

The CP/M-68K file System is based on and is upwardly compatible with the CP/M-80™

Version 2.2 and CP/M-86™ Version 1.1 file Systems. However, CP/M-68K supports a

much larger file size with a maximum of 32 megabytes per file.

CP/M-68K supports a maximum of 16 disk drives, with 512 megabytes per drive.

CP/M-68K supports other peripheral devices that the Basic I/O System (BIOS) assigns

to one of the four logical devices: LIST, CONSOLE, AUXILIARY INPUT, or

AUXILIARY OUTPUT.

This guide describes the programming interface to CP/M-68K. The first few sections

in this guide discuss the CP/M-68K architecture, memory modeis, executable programs,

and file System access functions. Latter sections of this guide describe programming tools

and Utilities distributed with your CP/M-68K System.

This guide assumes you are an experienced programmer familiär with the basic

programming concepts of assembly language. If you are not familiär with the Motorola

68000 assembly language, refer to the following Motorola manuals:

■ 16-BIT Microprocessor User's Manual, third edition MC68000UM(AD3)

■ M68000 Resident Structured Assembler Reference Manual M68KMASM(D4)

Before you can use the facilities in this guide, your CP/M-68K System must be

configured for your hardware environment. Normally, your System is configured for you

by the manufacturer of your Computer or the Software distributor. However, if you have

an unusual hardware environment, this may not be the case. Refer to the CP/M-68K

Operating System System Guide for details on how to configure your System for a custom

hardware environment.

New Functions and Implementation Changes

CP/M-68K has six new Basic Disk Operating System (BDOS) functions and additional

implementation changes in the BDOS functions and data structures that differ from

other CP/M Systems. The new BDOS functions and implementation changes are listed

in Appendix F.

Table F-4 in Appendix F contains functions and commands supported by other CP/M

Systems, but that are not supported by CP/M-68K.

Table of Contents

1 Introduction to CP/M-68K

1.1 CP/M-68K System Architecture . 1-1

1.2 Transient Programs 1-2

1.3 File System Access 1-2

1.4 Programming Tools and Commands 1-2

1.5 CP/M-68K File Specification 1-6

1.6 Wildcards 1-7

1.7 CP/M-68K Terminology 1-8

2 The CCP and Transient Programs

2.1 CCP Built-In and Transient Commands 2-1

2.2 Loading A Program In Memory 2-2

2.2.1 Base Page Initialization By The CCP 2-2

2.2.2 Loading Multiple Programs 2-3

2.2.3 Base Page Initialization 2-3

2.3 Exiting Transient Programs 2-4

2.4 Transient Program Execution Model 2-5

3 Coaaand File Format

3.1 The Header and Program Segments 3-1

3.2 The Symbol Table 3-4

3.2.1 Printing The Symbol Table 3-6

3.3 Relocation Information 3-6

3.3.1 The Format of A Relocation Word 3-8

Table of Contents

(continued)

4 Basic Disk Operating System Functions

4.1 BDOS Functions and Parameters 4-3

4.1.1 Invoking BDOS Functions 4-3

4.1.2 Organisation Of BDOS Functions 4-4

4.2 File Access Functions 4-4

4.2.1 A File Control Block (FCB) 4-5

4.2.2 File Processing Errors 4-7

4.2.3 Open File Function 4-11

4.2.4 Close File Function 4-12

4.2.5 Search For First Function 4-13

4.2.6 Search For Next Function 4-14

4.2.7 Delete File Function 4-15

4.2.8 Read Sequential Function 4-16

4.2.9 Write Sequential Function 4-17

4.2.10 Make File Function 4-19

4.2.11 Rename File Function 4-20

4.2.12 Set Direct Memory Access (DMA) Address . . . 4-21

4.2.13 Set File Attributes Function 4-22

4.2.14 Read Random Function 4-24

4.2.15 Write Random Function 4-26

4.2.16 Compute File Size Function 4-28

4.2.17 Set Random Record Function 4-30

4.2.18 Write Random With Zero Fill Function 4-32

4.3 Drive Functions 4-33

4.3.1 Reset Disk System Function 4-34

4.3.2 Select Disk Function 4-35

4.3.3 Return Login Vector Function 4-36

4.3.4 Return Current Disk Function 4-37

4.3.5 Write Protect Disk Function 4-38

4.3.6 Get Read-Only Vector Function 4-39

4.3.7 Get Disk Parameters Function 4-40

4.3.8 Reset Drive Function 4-42

4.3.9 Get Disk Free Space Function 4-43

4.4 Character I/O Functions 4-44

4.4.1 Console I/O Functions 4-45

Console Input Function 4-45

Console Output Function 4-46

Direct Console I/O Function 4-47
Print String Function 4-49

Read Console Buffer Function 4-50

Get Console Status Function 4-52

VI

Table of Contents

(continued)

4.4.2 Additional Serial I/O Functions 4-53

Auxiliary Input Function 4-53

Auxiliary Output Function 4-54

List Output Function 4-55

4.4.3 I/O Byte Functions 4-55

Get I/O Byte Function 4-57

Set I/O Byte Function 4-58

4.5 System/Program Control Functions 4-58

4.5.1 System Reset Function 4-59

4.5.2 Return Version Number Function 4-60

4.5.3 Set/Get User Code 4-62

4.5.4 Chain To Program Function 4-63

4.5.5 Flush Buffers Function 4-64

4.5.6 Direct BIOS Call Function 4-65

4.5.7 Program Load Function 4-67

4.6 Exception Functions 4-70

4.6.1 Set Exception Vector Function 4-71

4.6.2 Set Supervisor State 4-74

4.6.3 Get/Set TPA Limits 4-75

5 AS68 Assembler

5.1 Assembler Operation 5-1

5.2 Initializing AS68 5-1

5.3 Invoking the Assembler (AS68) 5-1

5.4 Assembly Language Directives 5-4

5.5 Sample Commands Invoking AS68 5-10

5.6 Assembly Language Oifferences 5-10

5.7 Assembly Language Extensions 5-12

5.8 Error Messages 5-13

vn

Table of Contents

(continued)

6 L068 Linker

6.1 Linker Operation 6-1

6.2 Invoking the Linker (L068) 6-1

6.3 Sample Commands Invoking L068 6-4

6.4 L068 Error Messages 6-4

7 Programming Utilities

7.1 Archive Utility 7-1

7.1.1 AR68 Syntax 7-1

7.1.2 AR68 Operation 7-3

7.1.3 AR68 Commands and Options 7-3

7.1.4 Errors 7-7

7.2 DUMP Utility 7-8

7.2.1 Invoking DUMP 7-8

7.2.2 DUMP Output 7-9

7.2.3 DUMP Examples 7-10

7.3 Relocation Utility 7-11

7.3.1 Invoking RELOC 7-11

7.3.2 RELOC Examples 7-12

7.4 SIZE68 Utility 7-13

7.4.1 Invoking SIZE68 7-13

7.4.2 SIZE68 Output 7-14

7.4.3 SIZE68 Examples 7-15

7.5 SENDC68 Utility 7-16

7.5.1 Invoking SENDC68 7-16

7.5.2 SENDC68 Example 7-17

I 7.6 FIND Utility 7-17

Table of Contents

(continued)

8 DOT-68K

8.1 DDT-68K Operation 8-1

8.1.1 Invoking DDT-68K 8-1

8.1.2 DDT-68K Command Conventions 8-1

8.1.3 Specifying Address 8-2

8.1.4 Terminating DDT-68K 8-2

8.1.5 0DT-68K Operation with Interrupts 8-3

8.2 DDT-68K Commands . . , 8-3

8.2.1 The 0 (Display) Command 8-3

8.2.2 The E (Load for Execution) Command 8-4

8.2.3 The F (Fill) Command 8-5

8.2.4 The G (Go) Command 8-5

8.2.5 The H (Hexadecimal Math) Command 8-6

8.2.6 The I (Input Command Tail) Command 8-6

8.2.7 The L (List) Command 8-7

8.2.8 The M (Move) Command 8-7

8.2.9 The R (Read) Command 8-8

8.2.10 The S (Set) Command 8-8

8.2.11 The T (Trace) Command 8-9

8.2.12 The U (Untrace) Command 8-10

8.2.13 The V (Value) Command 8-10

8.2.14 The W (Write) Command 8-10

8.2.15 The X (Examine CPU State) Command 8-11

8.3 Assembly Language Syntax for A and L Commands ... 8-12

9 The Link Bditor, UHK68

9.1 Linking Files 9-1

9.2 LINK68 Command Lines 9-2

9.3 LINK68 Command Line Options 9-4

9.4 Producing Overlays 9-8

9.4.1 General Overlay Scheine 9-8

9.4.2 Linking Overlays 9-9

9.4.3 Overlay File Format 9-11

ix

Table of Contents

(continued)

9.5 LINK68 Error Messages 9-11

9.6 LINK68 Internal Logic Failares 9-17

9.7 Redirecting Diagnostic Output 9-17

Appendixes

A Summary of BIOS Functions A-l

B Transient Program Load Example B-l

C Base Page Format C-l

D Instruction Set Summary D-l

B Error Messages E-l

E.l AR68 Error Messages E-l

E.l.l Fatal Diagnostic Error Messages E-l

E.1.2 AR68 Internal Logic Error Messages E-4

E.2 AS68 Error Messages E-5

E.2.1 AS68 Diagnostic Error Messages E-5

E.2.2 User-recoverable Fatal Error Messages . . . E-10

E.2.3 AS68 Internal Logic Error Messages E-13

E.3 BDOS Error Messages E-14

E.4 BIOS Error Messages E-16

E.5 CCP Error Messages E-17

E.5.1 Diagnostic Error Messages E-17

E.5.2 CCP Internal Logic Error Messages E-20

Appendixes

(continued)

E.6 DDT-68K Error Messages E-20

E.6.1 Diagnoatic Error Messages E-21

E.6.2 DDT-68K Internal Logic Error Messages . . . E-26

E.7 DUMP Error Messages E-26

E.8 LO68 Error Messages E-27

E.8.1 Fatal Oiagnostic Error Messages E-27

E.8.2 L068 Internal Logic Error Messages E-30

E.9 NM68 Error Messages E-31

E.10 RELOC Error Messages E-32

E.ll SENDC68 Error Messages E-35

E.ll.l Diagnostic Error Messages E-35

E.ll.2 SEMDC68 Internal Logic Error Messages . . . E-36

E.12 SIZE68 Error Messages E-37

P New Functions and Implementation Changes F-l

F.l BDOS Function and Data Structure Changes F-2

F.2 BDOS Functions Not Supported By CP/M-68K F-3

Tables, Figures, and Listings

Tables

1-1. Program Modules in the CPM.SYS File 1-1

1-2. CP/M-68K Commands (Programmer's Guide) 1-3

1-3. CP/M-68K Commands (User's Guide) 1-4

1-4. CP/M-68K Commands (C Manual) 1-5

1-5. Delimiter Characters 1-7

1-6. CP/M-68K Terminology 1-8

1-7. CP/M-68K Programmer's Guide Conventions 1-9

xx

Tables, Figures, and Listings

(continued)

3-1. Values for Symbol Types 3-5

3-2. Relocation Word Values (bits 0 through 2) ... 3-8

4-1. CP/M-68K BDOS Functions 4-1

4-2. BDOS Parameter Suraary 4-3

4-3. File Access Functions 4-5

4-4. Read-Write Error Response Options 4-8

4-5. Disk File Error Response Options 4-10

4-6. Unsuccessful Write Operation Return Codes . . . 4-18

4-7. File Attributes 4-23

4-8. Read Random Function Return Codes 4-25

4-9. Write Random Function Return Codes 4-27

4-10. Current Position Definitions 4-30

4-11. Drive Functions 4-33

4-12. Fields in the DPB and CDPB 4-41

4-13. Character I/O Functions 4-44

4-14. Direct Console 1/0 Function Values 4-48

4-15. Line Editing Controls 4-51

4-16. I/O Byte Field Definitions 4-56

4-17. System and Program Control Functions 4-58

4-18. Version Numbers 4-61

4-19. Program Load Function Return Codes 4-67

4-20. Load Parameter Block Options 4-69

4-21. Valid Vectors and Exceptions 4-73

4-22. TPAB Parameter Field Values. Bits 0 and 1 ... 4-77

5-1. Assembler Option 5-2

5-2. Assembly Language Directives 5-4

6-1. Linker Command Options 6-1

7-1. AR68 Command Line Components 7-2

7-2. AR68 Commands and Options 7-3

7-3. DUMP Command Line Components 7-9

7-4. DUMP Output Components 7-10

7-5. RELOC Command Line Components 7-12

7-6. SIZE68 Command Line Components 7-14

7-7. SIZE68 Output Components 7-15

7-8. SENDC68 Command Line Components 7-17

8-1. DDT-68K Command Summary 8-2

9-1. LINK68 Command Line Options 9-4

9-2. LINK68 Diagnostic Error Messages 9-12

Tables, Figures, and Listings

(continued)

A-l. Summary of BIOS Functions A-l

C-l. Base Page Format: Offsets and Contents C-l

D-l. Instruction Set Summary D-l

D-2. Variations of Instruction Types D-4

E-l. AR68 Fatal Diagnostic Error Messages E-l

E-2. AS68 Diagnostic Error Messages E-5

E-3. AS68 User-recoverable Fatal Error Messages . . . E-10

E-4. BDOS Error Messages E-14

E-5. BIOS Error Messages E-17

E-6. CCP Diagnostic Error Messages E-18

E-7. DDT-68K Diagnostic Error Messages E-21

E-8. DUMP Error Messages E-27

E-9. L068 Fatal Diagnostic Error Messages E-28

E-10. NM68 Error Messages E-32

E-ll. RELOC Error Messages E-33

E-12. SENDC68 Diagnostic Error Messages E-36

E-13. SIZE68 Error Messages E-37

F-l. New BDOS Functions F-l

F-2. BDOS Function Implementation Changes F-2

F-3. BDOS Data Structure Implementation Changes . . . F-2

F-4. BDOS Functions Not Supported by CP/M-68K F-3

Figures

2-1. Format of the Command Tail in the DMA Buffer . . 2-3

2-2. CP/M-68K Default Memory Model 2-5

2-3. CP/M-68K Memory Model with Inaccessible Memory . 2-6

3-1. Header for Contiguous Program Segments 3-2

3-2. Header for Noncontiguous Program Segments . . . 3-3

3-3. Entry in Symbol Table 3-4

4-1. FCB Format for Rename Function 4-20

4-2. DPB and CDBP 4-40

4-3. I/O Byte 4-55

4-4. Command Line Format in the DMA Buffer 4-63

4-5. BIOS Parameter Block (BPB) 4-66

4-6. Format of the Load Parameter Block (LPB) 4-68

4-7. Exception Parameter Block (EPB) 4-71

4-8. Transient Program Parameter Block 4-75

4-9. Parameter Field in TPAB 4-76

9-1. Typical LINK68 Overlay Scheine 9-9

9-2. Nested Overlay Scheine 9-10

xm

Tables, Figures, and Listings

(continued)

Listings

B-l. Transient Program Load Example 1 . B-l

B-2. Transient Program Load Example 2 B-5

xiv

Section 1

Introduction to CP/M-68K

CP/M-68K contains most of the facilities of other CP/M Systems with additional

features required to address up to sixteen megabytes of main memory available on the

68000 microprocessor. The CP/M-68K file System is upwardly compatible with CP/M-80

Version 2.2 and CP/M-86 Version 1.1. The CP/M-68K file structure Supports a maximum

of sixteen drives with up to 512 megabytes on each drive and a maximum file size of 32

megabytes.

1.1 CP/M-68K Architecture

The CP/M-68K operating System resides in the file CPM.SYS on the System disk. A

cold Start loader resides on the first two tracks of the System disk and loads the CPM.SYS

file into memory during a cold Start. The CPM.SYS file contains the three program

s modules described in Table 1-1.

Table 1-1. Program Modules in the CPM.SYS File

Module

Console CommandProcessor

Basic Disk Operating System

Basic I/O System

Mnemonic

CCP

BDOS

BIOS

Description

User interface that parses the

user command line.

Provides functions that ac-

cess the file System.

Provides functions that inter

face peripheral device drivers

for I/O processing.

The sizes of the CCP and BDOS modules are fixed for a given release of CP/M-68K.

The BIOS custom module, normally supplied by the Computer manufacturer or Software

distributor depends on the System configuration, which varies with the implementation.

Therefore, the size of the BIOS also varies with the implementation.

S9 DIGITAL RESEARCH™— .

1-1

1.1 CP/M-68K Architecture CP/M-68K Programmer's Guide

The CP/M-68K operating System can be loaded to execute in any portion of memory

above the loeations reserved in the 68000 architecture for the exception vectors (0000H

through 03FFH). All CP/M-68K modules remain resident in memory. The CCP cannot

be used as a data area subsequent to transient program load.

1.2 Transient Programs

After CP/M-68K is loaded in memory, the remaining contiguous address space that

is not occupied by the CP/M-68K operating System is called the Transient Program Area

(TPA). CP/M-68K loads executable files, called command files, from disk to the TPA.

These command files are also called transient commands or transient programs because

they temporarily reside in memory, rather than being permanently resident in memory

and configured in CP/M-68K. The format of a command file is described in Section 3.

1.3 File System Access

Programs do not specify absolute loeations or default variables when accessing

CP/M-68K. Instead, programs invoke BDOS and BIOS functions. Section 4 describes

the BDOS functions in detail. Appendix A lists the BIOS calls. Refer to the CP/M-68K

Operating System System Guide for detailed descriptions of the BIOS functions. In

addition to these functions, CP/M-68K decreases dependence on absolute addresses by

maintaining a base page in the TPA for each transient program in memory. The base

page contains initial values for the File Control Block (FCB) and the Direct Memory

Access (DMA) buffer. For details on the base page and loading transient programs, refer

to Section 2.

1.4 Programming Tools and Commands

CP/M-68K contains a füll set of programming tools that include an assembler (AS68),

linker, (LO68), Archive Utility (AR68), Relocation Utility (RELOC), DUMP Utility,

SIZE68, and SENDC68. Each of these tools is discussed in the latter part of this guide.

Table 1-2 lists the commands that invoke these tools. Tables 1-3 and 1-4 list other

commands supported by CP/M-68K and the manual in which they are documented.

1-2
■ m DIGITAL RESEARCFT"

CP/M-68K Programmer'8 Guide 1.4 Programming Tools and Commands

Table 1-2 presents the CP/M-68K commands that are described in

this manual.

Table 1-2. CP/M-68K CoMmandß (Prograuer' s Guide)

Command

AR68

AS68

DDT

DUMP

FIND

LINK68"

L068

NM68

RELOC

SENDC68

SIZE68

Description

The AR68 archive Utility creates library files or

deletes, adds, and extracts object modules fron

an existing library file.

This is the AS68 assembler.

This is the CP/M-68K debugger, DDT-68K'"

The DUMP Utility prints the contents of a file in

hexadecimal and ASCII notation to aid in

debugging.

The FIND Utility locates and prints all

occurrences of a specified string in specified

files.

This is one of the linker programs you can use

with CP/M-68K.

This is another linker program you can use with

CP/M-68K.

The NM68 Utility prints the symbol table for a

command or object file.

The RELOC Utility relocates a command file

containing relocation Information to an absolute

address.

The SENDC68 Utility converts a command file to the

Motorola S-record format.

The SIZE68 Utility prints the total size of a

command file and the size of each program segment

in the file.

1-3

1.4 Programming Tools and Commands CP/M-68K Programmer's Guide

Table 1-3 presents the CP/M-68K commands that are described in

the CP/M-68K Operating System User's Guide.

Table 1-3. CP/M-68K Coaaands (User's Guide)

Command

DIR

DIRS

ED

ERA

PIP

REN

SUBMIT

TYPE

USER

Description

Displays the directory of files from a specified

disk on the console screen.

Displays the directory of System files from a

specified disk on the console screen.

This is the CP/M-68K text editor.

Erases one or more specified files from a disk.

Copies, combines, and transfers specified files

between peripheral devices.

Renames an existing file to a specified new name.

This command executes a file containing a series

of commands.

Displays the contents of an ASCII file on the

console screen.

Displays or changes the current user number.

1-4

CP/M-68K Programmer's Guide 1.4 Programming Tools and Commands

Table 1-4 describes commands used in the C Language Programming Guide for

CP/M-68K.

Table 1-4. CP/M-68K Commands (C Manual)

Command Description

CP68

C068

C168

Invokes a submit file that invokes the C Compiler for compiling

CP/M-68K C source files.

Invokes the C preprocessor for processing macros when you compile

CP/M-68K C source files.

Invokes the C parser when you compile CP/M-68K C source files.

Invokes the assembly language code generator for the CP/M-68K C

Compiler when you compile C source files.

m DIGITAL RESEARCH™

1-5

1.5 CP/M-68K File Specification CP/M-68K Programmer's Guide

1.5 CP/M-68K File Specification

The CP/M-68K file spedfication is compatible with other CP/M Systems. The format

contains three fields: a 1-character drive selectcode (d), a 1- through 8-character filename

(f...f), and a 1- through 3-character filetype (ttt) field as shown below.

Format d:ffffffff.ttt

Example BiMYRAH.DAT

The drive select code and filetype fields are optional. A colon (:) delimits the drive

select field. A period (.) delimits the filetype field. These delimiters are required only

when the fields they delimit are specified.

Values for the drive select code ränge from A through P when the BIOS implementation

supports 16 drives, the maximum number allowed. The ränge for the drive code is

dependent on the BIOS implementation. Drives are labeled A through P to correspond

to the 1 through 16 drives supported by CP/M-68K. However, not all BIOS implemen-

tations support the füll ränge.

The characters in the filename and filetype fields cannot contain delimiters (the colon

and period). A command line and its file specifications, if any, that are entered at the

CCP level are automatically put in upper-case internally before the CCP parses them.

However, not all commands and file specifications are entered at the CCP level.

CP/M-68K does not prevent you from induding delimiters in file specifications that

are created or referenced by functions that bypass the CCP. For example, the BDOS

Make File Function (22) allows you to create a file spedfication that indudes delimiters,

although the CCP cannot parse and access such a file.

In addition to the delimiter characters already mentioned, you should avoid using the

delimiter characters in Table 1-5 in the file specification of a file you create. Several

CP/M-68K built-in commands and Utilities have spedal uses for these characters.

1-6

DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 1.5 CP/M-68K File Specification

Table 1-5.

Character

[]•
0
<>

=

*

&

>

i
>

i

$

:

>

+

-

Delimiter Characters

Description

Square brackets

parentheses

angle brackets

equalssign

asterisk

ampersand

comma

exclamation point

bar

question mark

slash

dollarsign

period

colon

semicolon

plus sign

minus sign

1.6 Wildcards

CP/M-68K supports two wildcards, the question mark (?) and the asterisk (*). Several

Utilities and BDOS functions allow you to specify wildcards in a file specification to

perform the Operation or function on one or more files. However, BDOS functions

support only the ? wildcard.

The ? wildcard matches any character in the character position occupied by this

wildcard. For example, the file specification MPRAH.DAT indicates the second letter of

the filename can be any alphanumeric character if the remainder of file specification

matches. Thus, the ? wildcard matches exactly one character position.

The * wildcard matches one or more characters in the field or remainder of a field

that this wildcard occupies. CP/M-68K internally pads the field or remaining portion of

the field occupied by the * wildcard with ? wildcards before searching for a match. For

example, CP/M-68K converts the file B*.DAT to B???????.DAT before searching for a

matching file specification. Thus, any file that Starts with the letter B and has a filetype

of DAT matches this file specification.

SS DIGITAL RESEARCH™

1-7

1.6 Wildcards CP/M-68K Programmer's Guide

For details on wildcard support by a specific BDOS function, refer to the description

of the function in Section 4 of this guide. For additional details on these wildcards and

support by CP/M-68K Utilities, refer to the CP/M-68K OperatingSystem User's Guide.

1.7 CP/M-68K Tenninology

Table 1-6 lists the terminology used throughout this guide to describe CP/M-68K

values and program components.

Table 1-6. CP/M-68K Terminology

Term

Nibble

Byte

Word

Longword

Address

Offset

Text Segment

Data Segment

Block Storage

Segment (bss)

Meaning

4-bit value

8-bit value

16-bit value

32-bit value

32-bit value that specifies a location in storage

A fixed displacement defined by the user to reference a location

in storage, other data source, or destination.

The section of a program that contains the program instructions.

The section of a program that contains initialized data.

The section of a program that contains uninitialized data.

DIGITAL RESEARCH"

1-8

CP/M-68K Programmer's Guide 1.7 CP/M-68K Terminology

Table 1-7 describes Conventions used in this tnanual.

Table 1-7. CP/M-68K Programmer's Guide Conventions

Convention

[]

nH

numeric

values

(n)

. or...

RETURN

CTRL-X

Meaning

Square brackets in a command line endose optional parameters.

The capital letter H follows numeric vaiues that are represented in

hexadecimal notation.

Unless otherwise stated, numeric values are represented in decimal

notation.

BDOS function numbers are enclosed in parentheses when they appear

in text.

A vertical or horizontal elipsis indicates missing elements in a series

unless noted otherwise.

The word RETURN refers to the RETURN key on the keyboard of

your console. Unless otherwise noted, to invoke a command, you must

press RETURN after you enter a command line from your console.

The mnemonic CTRL-X instructs you to press the key labeled CTRL

while you press another key indicated by the variable X. For example,

CTRL-C instructs you to press the CTRL key while you simultane-

ously press the key lettered C.

End ofSection 1

DIGITAL RESEARCH1"

1-9

Section 2

The CCP and Transient Programs

This section discusses the Console Command Processor (CCP), built-in and transient

commands, loading and exiting transient programs, and CP/M-68K memory modeis.

2.1 CCP Built-in and Transient Commands

After an initial cold Start, CP/M-68K displays a sign-on message at the console. Drive A,

containing the System disk, is logged in automatically. The Standard prompt (>),

preceded by the letter A for the drive, is displayed on the console screen. This prompt

informs the user that CP/M-68K is ready to receive a command line from the console.

In response to the prompt, a user types the filename of a command file and a command

tail, if required. CP/M-68K Supports two types of command files, built-in commands

and transient commands. Built-in commands are configured and reside in memory with

CP/M-68K. Transient commands are loaded in the TPA and do not reside in memory

allocated to CP/M-68K. The foüowing list contains the seven built-in commands that

CP/M-68K supports.

DIR

DIRS

ERA

REN

TYPE

USER

SUBMIT

A transient command is a machine-readable executable program file in memory. A

transient command file is loaded from disk to memory. Section 3 describes the format

of transient command files.

ü DIGITAL RE5EARCH"

2-1

2.1 CCP Built-in and Transient Commands CP/M-68K Programmer's Guide

When the user enters a command line, the CCP parses it and tries to execute the file

specified. The CCP assumes a file is a command file when it has any filetype other than

.SUB. When the user specifies oniy the filename but not the filetype, the CCP searches

for and tries to execute a file with a matching filename and a filetype of either 68K or

three blanks. The CCP searches the current user number and User Number 0 for a

matching file. If a command file is not found, but the CCP finds a matching file with a

filetype of SUB, the CCP executes it as a submit file.

2.2 Loading a Program in Memory

Either the CCP or a transient program can load a program in memory with the

BDOS Program Load Function (59) described in Section 4.5. After the program is loaded,

the TPA contains the program segments (text, data, and bss), a user Stack, and a base

page. A base page exists for each program loaded in memory. The base page is a 256-byte

data structure that defines a program's operating environment. Unlike other CP/M

Systems, the base page in CP/M-68K does not reside at a fixed absolute address prior to

being loaded. The BDOS Program Load Function (59) determines the absolute address

of the base page when the program is loaded into memory. The BDOS Program Load

Function (59) and the CCP or the transient program initialize the Contents of the base

page and the program's Stack as described below.

2.2.1 Base Page Initialization by the CCP

The CCP parses up to two filenames following the command in the input command

line. The CCP places the properly formatted FCBs in the base page. The default DMA

address is inirialized at an offset of 008OH in the base page. The default DMA buffer

occupies the second half of the base page. The CCP initializes the default DMA buffer

to contain the command tail, as shown in Figure 2-1. The CCP invokes the BDOS

Program Load Function (59) to load the transient program before the CCP parses the

command line.

Program Load, Function 59, allocates space for the base page and initializes base page

values at offsets 0000H through 0024H from the beginning of the base page (see

Appendix C). Values at offsets 0025H through 0037H are not initialized; but the space

is reserved. The CCP parses the command line and initializes values at offsets 0038H

through 00FFH. Before the CCP gives control to the loaded program, the CCP pushes

the address of the transient program's base page and a return address within the CCP

on the user Stack. When the program is invoked, the top of the Stack contains a return

address within the CCP, which is pointed to by the Stack pointer, register A7. The address

of the program's base page is located at a 4-byte offset from the Stack pointer.

m DIGITAL RESEARCH™

2-2

CP/M-68K Programmer's Guide 2.2 Loading a Program in Memory

2.2.2 Loading Multiple Programs

Multiple programs can reside in memory, but the CCP can load only one program at

a time. However, a transient program, loaded by the CCP, can load one or more

additional programs in memory. A program loads another program in memory by

invoking the BDOS Program Load Function (59). Normally, the CCP supplies FCBs and

the command tail to this function. The transient program must provide this information,

if required, for any additional programs it loads when the CCP is not present.

2.2.3 Base Page Initialization by a Transient Program

A transient program invokes the BDOS Program Load Function (59) to load an

additional program. The BDOS Program Load Function allocates space and initializes

base page values at offsets 0000H through 0024H for the program as described in

Section 2.2.1. The transient program must initialize the base page values that the CCP

normally supplies, such as FCBs, the DMA address, and the command tail, if the program

being loaded requires these values. The command tail contains the command parameters

but not the command. The format of the command tail in the base page consists of a

1-byte character count, followed by the characters in the command tail, and terminated

by a null byte as shown in Figure 2-1. The command tail cannot contain more than 126

bytes plus the character count and the terminating null character.

COUNT CHARACTERS IN THE COMMAND TAIL 0

1 BYTE N BYTES < 126 BYTES

Figure 2-1. Format of the Command Tail in the DMA Buffer

Unlike the CCP, a transient program does not necessarily push the address of its base

page and a return address on the user Stack before giving control to the program that it

loads with the Program Load Function. The transient program can be designed to push

these addresses on the user Stack ofthe program it loads if the program uses the base page.

The address of the base page for the loaded program is not pushed on the user Stack

by the Program Load Function (59). Instead, it is returned in the load parameter block

(LPB), which is used by the BDOS Program Load Function. Appendix C summarizes

the offsets and contents of a base page. Appendix B contains two examples, an assembly

language program and a C language program, which illustrate how a transient program

loads another program with the BDOS Program Load Function (59), but without the

CCP.

m DIGITAL RESEARCH™

2-3

2.3 Exiting Transient Programs CP/M-68K Programmer's Guide

2.3 Exiting Transient Programs

CP/M-68K Supports two ways to exit a transient program and return control to the

CCP:

■ Interactively, the user types CTRL-C at the console, the default I/O device

■ Program a return to the CCP with either:

1. a Return From Subroutine (RTS) Instruction

2. the BDOS System Reset Function (0)

A user typing CTRL-C from the console returns control to the CCP only if the program

uses any of the following BDOS functions.

■ Console Output (2)

■ Print String (9)

■ Read Console Buffer (10)

On input, CTRL-C must be the first character that the user types on the line. CTRL-C

terminates execution of the main program and any additional programs loaded beyond

the CCP level. For example, a user who types CTRL-C while debugging a program

terminates execution of the program being debugged and DDT-68K before the CCP

regains control.

Typing CTRL-C in response to the System prompt resets the Status of all disks to

read-write.

To program a return to the CCP, specify a Return from Subroutine (RTS) Instruction

or the BDOS System Reset Function (0).

The RTS instruction must be the last one executed in the program and the top of the

Stack must contain the system-supplied return address for control to return to the CCP.

When a transient program begins execution, the top of the Stack contains this system-

supplied return address. If the program modifies the Stack, the top of the Stack must

contain this system-supplied return address before an RTS instruction is executed.

Invoking the BDOS System Reset Function (0) described in Section 4.5 is equivalent

to programming a return to the CCP. This function performs a warm boot, which

terminates the execution of a program before it returns program control to the CCP.

2-4
DIGITAL RESEARCH-

CP/M-68K Programmer's Guide 2.4 Transient Program Execution Model

2.4 Transient Program Execution Model

The memory model shown in Figure 2-2 illustrates the normal configuration of the

CP/M-68K operating System after the CCP loads a transient program. CP/M-68K divides

memory in two categories: System and the Transient Program Area (TPA).

CP/M-68K System memory contatns the Basic Disk Operating System (BDOS), the

Basic I/O System (BIOS), the Console Command Processor (CCP), and Exception

Vectors. The bootstrap program initializes the memory locations in which these compo-

nents reside. Other than exception vectors, which reside in memory locations 0000H

through 03FFH, the remaining components can reside anywhere in memory, provided

the BDOS and CCP are contiguous.

The TPA consists of contiguous memory locations that are not occupied by the

CP/M-68K operating System. A user Stack, a base page, the three program segments (a

text segment, an initialized data segment, and a block storage segment (bss)) exist for

each transient program loaded in the TPA. The BDOS Program Load Function (59)

loads a transient program in the TPA. If memory locations are not specified when the

transient program is linked, the program is loaded in the TPA as shown in Figure 2-2.

HIGH MEMORY

SYSTEM

TRANSIENT

PROGRAM

AREA

(TPA)

SYSTEM

CP/M-68K

USER STACK

FREE MEMORY

BSS

DATA

TEXT

BASE PAGE

EXCEPTION VECTORS

BIOS

BOOS

CCP

Figure 2-2. CP/M-68K Default Memory Model

O DIGITAL RESEARCH™

2-5

2.4 Transient Program Execution Model CP/M-68K Programmcr's Guide

Some Systems can configure and load CP/M-68K in such a manner that one or more

portions of memory cannot be addressed by the CP/M-68K operating System (see

Figure 2-3). CP/M-68K cannot access this memory. CP/M-68K does not know the

memory exists and cannot define or configure the memory in the BIOS because

CP/M-68K requires that the TPA is one contiguous area. However, a transient program

that knows this memory exists can access it. Also, note that CP/M-68K does not support

or require memory management.

HIGH MEMORY

SYSTEM

TRANSIENT

PROGRAM

AREA

(TPA)

SYSTEM

I

NOT ACCESSIBLE TO CP/M-68K

CP/M-68K

BIOS

BDOS

CCP

USER STACK

FREE MEMORY

BSS

DATA

TEXT

BASE PAGE

EXCEPTION VECTORS

LOW MEMORY

Figure 2-3. CP/M-68K Memory Model with Inaccessible Memory

End ofSection 2

m DIGITAL RESEARCH"

2-6

Section 3

Command File Format

This section describes the format of a command file. The linker processes one or more

compiled or assembled files to produce an executable machine-readable file called a

command file. By default, a command file has a filetype of 68K.

A command file always contains a header, two program segments (a text segment and

an initialized data segment), and optionally contains a symbol table and relocation

information. These components are described in the following sections.

3.1 The Header and Program Segments

The header, the first component in the file, specifies the size and starting address of

the other components in the command file, which are listed below.

■ Program segments:

text: contains the program instructions.

data: contains data initialized within the command file.

block storage segment (bss): specifies space for uninitialized data generated by

the program during execution. Although space for the bss is specified in the

source command file, the space is not allocated until the command file is loaded

in memory. Therefore, the source command file on the disk contains no unin

itialized data.

■ Symbol table: defines referenced Symbols.

■ Relocation information: specifies the relative relocation of each word within

each program segment, if required.

DIGrTAL RESEARCH

3-1

3.1 The Header and Program Segments CP/M-68K Programmcr's Guide

The command file format supports two types of headers. The size and content of each

type differs. The contiguity of the program segments determines which type of header

a command file contains. When the program segments must be contiguous, the file

contains a 14-word header in the format shown in Figure 3-1. When the program

segments can be noncontiguous, the file contains an 18-word header in the format shown

in Figure 3-2. The first word of each header contains a hexadecimal integer that defines

which type of header the file contains.

SIZE CONTENTS

1 WOFlD INTEGER 601 AH DENOTES TEXT.

DATA. AND BSS ARE CONTIGUOUS

1 LONGWORD NUMBER OF BYTES IN TEXT SEGMENT

1 LONGWORD NUMBER OF BYTES IN DATA SEGMENT

1 LONGWORD NUMBER OF BYTES IN BSS

1 LONGWORD NUMBER OF BYTES IN SYMBOL TABLE

1 LONGWORD RESERVED; ALWAYS ZERO

1 LONGWORD BEGINNING OF TEXT SEGMENT AND

OF PROGRAM EXECUTION

1 WORD INTEGER FLAG FOR RELOCATION

BITS; IF 0. RELOCATION

BITS EXIST;IF NOT 0.

NO RELOCATION BITS EXIST.

Figure 3-1. Header for Contiguous Program Segments

To create a file that can contain noncontiguous program segments, specify the -T, -D,

and -B linker options described in Section 6 when you link the files. The header, identified

by 601BH denotes the size and location of each program segment. Note that this header

indicates the program segments can be noncontiguous and does not imply the segments

must be noncontiguous. See Figure 3-2.

BYTE

OFFSET

OH

2H

6H

OAH

OEH

12H

16H

1AH

SAMPLE VALUES

601 AH

2376H

422H

1806H

142H

O0O0H

500H

00H

3-2
® DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 3.1 The Header and Program Segments

BYTE

OFFSET

OH

2H

6H

OAH

OEH

12H

16H

1AH

1CH

20H

SAMPLE VALUES

601BH

57864H

446H

2S68H

69H

0000H

500H

00H

57O64H

581AAH

SIZE CONTENTS

1 WORD INTEGER 601 BH DENOTES TEXT, DATA.

AND BSS CAN BE NONCONTIGUOUS

1 LONGWORD NUMBER OF BYTES IN TEXT SEGMENT

1 LONGWORD NUMBER OF BYTES IN DATA SEGMENT

1 LONGWORD NUMBER OF BYTES IN BSS

1 LONGWORD NUMBER OF BYTES IN SYMBOL TABLE

1 LONGWORD RESERVED: ALWAYS 2ERO

1 LONGWORD BEGINNING OF TEXT SEGMENT

AND OF PROGRAM EXECUTION

1 WORD INTEGER FLAG FOR RELOCATION BITS;

IF 0. RELOCATION BITS EXIST; IF

NOT 0. NO RELOCATION BITS EXIST.

1 LONGWORD STARTING ADDRESS OF DATA SEGMENT

1 LONGWORD STARTING ADDRESS OF BSS

Figure 3-2. Header for Noncontiguous Program Segments

The linker computes the size of the segments in bytes. The result is always rounded

up to an even number. For example, the linker adds a byte to a program segment that

contains an odd number of bytes. The linker does not include the size of the header when

it computes the size of the segments.

After a program is linked and loaded in memory, it contains three program segments:

text, initialized data, and uninitialized data (bss). TheBDOS Program Load Function (59)

zeroes the bss when a program is loaded. A program begins execution at the beginning

of the text segment. See Figures 3-1 and 3-2.

B DIGITAL RESEARCH™

3-3

3.2 The Symbol Table CP/M-68K Programmer's Guide

3.2 The Symbol Table

The symbol table lists all the symbols specified in a program. Each symbol in the table

consists of a 7-word entry that describes the symbol name, type, and value. See Figure 3-3.

FIELD BYTE

NAME

\
TYPE-

VALUE

N

M

NULL

NULL

A400H

A

E

NULL

NULL

WORD

Figure 3-3. Entry in Symbol Table

3-4

69 DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 3.2 The Symbol Table

The name field, the first four words, contains the ASCII name of the symbol. This field

is padded with null characters when the ASCII name is less than eight characters. The

fifth word contains the symbol type. Valid values are listed in Table 3-1.

Table 3-1. Values For Symbol Types

Type

defined

equated

global

equated register

external reference

data based relocatable

text based relocatable

bss based relocatable

Value

8000H

4000H

2000H

1000H

800H

400H

200H

100H

When specifying a symbol type with multiple characteristics, the linker uses an OR

instruetion to combine several of the preceding values. For example, to speeify a defined,

global, data based, relocatable symbol, the linker combines the values of each characteris-

tic for a value of A400H.

The last field in an entry is the value field. It consists of a longword that contains the

value of the symbol. The value can be an address, a register number, the value of an

expression, or some other value. When the value field is nonzero and the type field

contains an external symbol, the linker interprets the symbol to be a common region in

which the size of the region equals the value of the symbol.

B DIGITAL RESEARCH"

3-5

3.2 The Symbol Table CP/M-68K Programmer's Guide

3.2.1 Printing the Symbol Table

Use the NM68 Utility to print the symbol table of an object or command file. To

invoke this Utility, specify the NM68 command and filename as shown.

NM68 filename.O [>filespec]

You must enter the filename of an object file or a command file. You can optionally

redirea the NM68 Output from your console to a file. To redirect the NM68 Output to

a file, specify a greater than sign (>) followed by a file specification after the filename

and filetype of the file from which NM68 prints the symbol table.

The NM68 Utility does not sort the symbols; it prints them in the order in which they

appeär in the file. Each symbol name is printed, followed by its value and one or more

of the following type descriptors:

equ (equated)

global

equreg (equated register)

exteraal

data

text

bss

abs (absolute)

3.3 Relocation Information

Relocation information is optional. The header relocation word, the last word in the

header, indicates whether relocation information exists. When its value is zero, relocation

information exists. None exists when the its value is nonzero.

Relocation information specifies the relocation of words in program Segments. One

word of relocation information, called a relocation word, exists for each word in each

of the program segments. The assembler and Compiler generate relocation words for

external symbols and address constants referenced in the text and data program seg

ments. The linker and sometimes the BDOS Program Load Function (59) use these

relocation words as described in Table 3-2.

® DIGITAL RESEARCH1"

3-6

CP/M-68K Programmer's Guide 3.3 Relocarion Information

The linker resolves external symbols when linking flies by modifying bits 0 through

2 of each relocation word that references an external symbol. After being modified, the

relocarion word indicates the program segment that the symbol references. Therefore,

instead of referencing an external symbol, the relocation word references a word located

in one of the program segments. Because the linker only modifies relocation words that

refer to external symbols, relocation words that do not reference this type of symbol

have the same value in the source file input to the linker and the executable file Output

by the linker.

The BDOS Program Load Function uses relocation words when it loads a program

in a location other than the one at which it was linked. The Program Load Parameter

Block (LPB) used by the Program Load Function specifies where the program is loaded.

When the LPB specifies a location other than the linked location, the BDOS computes

a bias (the difference between where a program segment is linked and where it will be

loaded in memory). When loading the program, the BDOS adds the bias as indicated by

the relocation words to the address of the relocatable words in the text and/or data

segments. However, when the BDOS loads the program in the memory locations at

which it was linked, the BDOS does not use the relocation words.

83 DIGITAL RESEARCH™ —

3-7

3.3 Relocation Information CP/M-68K Programmer's Guide

3.3.1 The Format of a Relocation Word

A relocation word is a 16-bit quantity. Bits 0 through 2 in each relocation word

indicate the type of address referenced and, if applicable, designate the segment to which

the relocation word refers. Values for these bits are described in Table 3-2.

Table 3-2. Relocation Word Values (bits 0 through 2)

Value

00

01

02

03

04

05

06

07

Description

no relocation information required; the reference is absolute

reference relative to the base address of the data segment

reference relative to the base address of the text segment

reference relative to the base address of the bss

references an undefined symbol

references the upper word of a longword; the next relocation word

contains the value determining whether the reference is absolute or

dependenton the base address of the text or data segments, or the bss.

16-bit PC-relative reference

indicates the first word of an instruction, which does not require

relocation information.

The remaining bits, 3 through 15, are not used unless the program references an

external symbol. In that case, these bits contain an index to the symbol table. The index

specifies the entry number of the symboHisted in the symbol table. Entry numbers in

the symbol table are numbered sequentially starting with zero.

End ofSection 3

® DIGITAL RESEARCH™

3-8

Section 4

Basic Disk Operating System

(BDOS) Functions

To access a file or a drive, to Output characters to the console, or to reset the System,

your program must access the CP/M-68K file System through the Basic Disk Operating

System (BDOS). The BDOS provides functions that allow your program to perform these

tasks. Table 4-1 summarizes the BDOS functions.

Table 4-1. CP/M-68K BDOS Functions

F#

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Function

System Reset

Console Input

Console Output

Auxiliary Input*

Auxiliary Output*

List Output

Direct Console I/O

Get I/O Byte*

Setl/OByte*

PrintString

Read Console Buffer

Get Console Status

Return Version Number

Reset Disk System

SelectDisk

Open File

CloseFile

SearchforFirst

SearchforNext

DeleteFile

Read Sequential

Type

System/Program Control

Character I/O, Console Operation

Character I/O, Console Operation

Character I/O, Additional Serial I/O

Character I/O, Additional Serial I/O

Character I/O, Additional Serial I/O

Character I/O, Console Operation

I/O Byte

I/O Byte

Character I/O, Console Operation

Character I/O, Console Operation

Character I/O, Console Operation

System Control

Drive

Drive

File Access

File Access

File Access

File Access

File Access

File Access

* Must be implemented in the BIOS

DIGITAL RESEARCH"

4-1

4 Basic Disk Operating System (BDOS) Functions CP/M-68K Programmer's Guide

Table 4-1. (continued)

21

22

23

24

25

26

28

29

30

31

32

33

34

35

36

37

40

46

47

48

50

59

61

62

63

Function

WriteSequential

Make File

Rename File

Return Login Vector

Return Current Disk

SetDMAAddress

WriteProtectDisk

Get Read-Only Vector

Set File Attributes

Get Disk Parameters

Set/Get User Code

Read Random

Write Random

ComputeFileSize

Set Random Record

ResetDrive

Write Random With

ZeroFill

Get Disk Free Space

Chain To Program

Flush Buffers

DirectBIOSCall

Program Load

Set Exception Vector

SetSupervisor State

Get/SetTPA Limits

Type

File Access

File Access

File Access

Drive

Drive

File Access

Drive

Drive

File Access

Drive

System/Program Control

File Access

File Access

File Access

File Access

Drive

File Access

Drive

System/Program Control

System/Program Control

System/Program Control

System/Program Control

Exception

Exception

Exception

4-2

SD DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.1 BDOS Functions and Parameters

4.1 BDOS Functions and Parameters

To invoke a BDOS function, you must specify one or more parameters. Each BDOS

function is identified by a number, which is the first parameter you must specify. The

function number is loaded in the first word of data register DO (DO.W). Some functions

require a second parameter, which is loaded, depending on its size, in the low order

word (Dl.W) or longword (DLL) of data register DL Byte parameters are passed as

16-bit words. The low order byte contains the data, and the high order byte should be

zeroed. For example, the second parameter for the Console Output Function (2) is an

ASCII character, which is a byte parameter. The character is loaded in the low order

byte of data register Dl (Dl.W). Some BDOS functions return a value, which is passed

in the first word of data register DO (DO.W). The hexadecimal value FFFF is returned

in register DO.Wwhen you specify an invalid function number in your program. Table 4-2

illustrates the syntax and summarizes the registers that BDOS functions use.

Table 4-2. BDOS Parameter Summary

BDOS Parameter Register

Function Number

Word Parameter

Longword Parameter

Return Value, if any

DO.W

Dl.W

DLL

DO.W

4.1.1 Invoking BDOS Functions

After the parameters for a function are loaded in the appropriate registers, the program

must specify a Trap 2 Instruction to access the BDOS and invoke the function. The

following example illustrates the assembler syntax required to invoke the Console

Output Function (2).

moye.w «2»dO ♦Moues the function number to the first

♦word in data reäister DO»

moue.w n 'U' »dl ♦Moves the ASCII character upper-case U

♦ to the first word in data rearister Dl.

trap ♦Accesses the BDOS to invoKe the function.

m DIGITAL RESEARCH*

4-3

4.1 BDOS Funcrions and Parameters CP/M-68K Programmer's Guide

The example above Outputs the ASCII character upper-case U to the consoie. The

assembler move instructions load register DO.W with the number 2 for the BDOS

Consoie Output Function and register Dl.W with the ASCII character upper-case U.

A pair of Single (") or double ("") quotation marks must enclose an ASCII character.

The Trap 2 Instniction invokes the BDOS Output Consoie Function, which echos the

character on the console's screen.

4.1.2 Organizadon of BDOS Functions

The parameters and Operation performed by each BDOS function are described in the

following sections. Each BDOS function is categorized according to the function it

performs. The categories are listed below.

File Access

Drive Access

Character I/O

System/Program Control

Exception

As you read the description of the functions, notice that some functions require an

address parameter designating the starting location of the direct memory access (DMA)

buffer or file control block (FCB). The DMA buffer is an area in memory where a

128-byte record resides before a disk write function and after a disk read Operation.

Functions offen use the DMA buffer to obtain or transfer data. The FCB is a 33- or

36-byte data structure that file access functions use. The FCB is described in Section 4.2.1.

4.2 File Access Functions

This section describes file access functions that create, delete, search for, read, and

write files. They include the functions listed in Table 4-3.

4-4
SS DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.2 File Access Functions

Table 4-3. File Access Functions

Function

Open File

Close File

SearchFor First

SearchForNext

DeleteFile

ReadSequential

WriteSequential

Make File

RenameFile

SetDMAAddress

Read Random

Write Random

Compute File Size

Write RandomWith

ZeroFill

Function Number

15

16

17

18

19

20

21

22

23

26

33

34

35

40

4.2.1 A File Control Block (FCB)

Most of the file access functions in Table 4-3 require the address of a File Control

Block (FCB). A FCB is a 33- or 36-byte data structure that provides file access informa-

tion. The FCB can be 33 or 36 bytes when a file is accessed sequentially, but it must be

36 bytes when a file is accessed randomly. The last three bytes in the 36-byte FCB contain

the random record number, which is used by random I/O functions and the Compute

File Size Function (35). The starting location of a FCB must be an even-numbered

address. The format of a FCB and definitions of each of its fields follow.

83 DIGITAL RESEARCH*

. 4-5

4.2 File Access Functions CP/M-68K Programmcr's Guide

Field |dr fl | i2 | ... | f8 tl | t2 113 [ex | sl | s2 | rc |dO | ... | dn [er | rO | rl | r2

Byte 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

dr drive code (0-16)

0 = > use default drive for file

1 = > auto disk select drive A,

2 = > auto disk select drive B,

16 = > auto disk select drive P.

f1 ...f8 contain the filename in ASCII

upper-case. High bit should equal 0

when the file is opened.

tl ,t2,t3 contain the filetype in ASCII

upper-case. The high bit should equal 0

when the file is opened. For the Set File

Attributes Function(seeSection 4.2.13),

tl', t2\ and t3' denote the high bit. The

following list indicates which attributes are set

when these bits are set and equal the value 1.

tl'= 1 =>Read-Onlyfile

t2'=l=>SYSfile

t3» = 1 = > Archive

ex

sl

s2

rc

contains the current extent number,

normally set to 00 by the user, but is in the

ränge 0-31 (decimal) for file I/O

reserved for intemai system use

reserved for infernal system use, set to zero for

Open (15),Make (22),Search (17,18) filefunctions.

record count field, reserved for system use

d0...dn filled in byCP/M, reserved for system use

4-6
89 DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 4.2 File Access Functions

er current record to be read or written;

for a sequential read or write file

Operation, the program normally sets

this field to zero to access the first

record in the file

rO,r1 ,r2 optional, contain random record number

in the ränge 0-3FFFFH; bytes rO, rl, and r2

are a 24-bitvalue with the mostsignificant

byte rO and the least significant byte r2.

Random I/O functions use the random record

number in this field.

For users of other versions of CP/M, note that both CP/M-80 Version 2.2 and

CP/M-68K perform directory operations in a reserved area of memory that does not

affect the DMA buffer contents, except for the Search For First (17) and Search For Next

(18) Functions in which the directory record is copied to the current DMA buffer.

4.2.2 File Processing Errors

When a program calls a BDOS funetion to process a file, an error condition can cause

the BDOS to return one of five error messages to the console:

CP/M Disk read error

CP/M Disk write error

CP/M Disk select error

CP/M Disk change error

CP/M Disk file error: ffffffff.ttt is read-only.

Except for the CP/M Disk file error, CP/M-68K displays the error message at the console

in the format:

*error message text" on drive x

The "error message text" is one of the error messages listed above. The variable x is a

one-letter drive code that indicates the drive on which CP/M-68K detects the error.

CP/M-68K displays the CP/M Disk file error in the preceding format.

When CP/M-68K detects one of these errors, the BDOS traps it. CP/M-68K displays

a message indicating the error and, depending on the error, allows you to abort the

program, retry the Operation, or continue processing. Each of these errors and their

options are described in Table 4-4.

DIGITAL RESEARCH*

4-7

4.2 File Access Functions CP/M-68K Programmer's Guide

CP/M issues a CP/M Disk read or write error when the BDOS receives a hardware

error from the BIOS. The BDOS specifies BIOS read and write sector commands when

the BDOS executes file-related System functions. If the BIOS read or write routine detects

a hardware error, the BIOS returns an error code to the BDOS that results in CP/M-68K

displaying a disk read or write error message at your console. In addition to the error

message, CP/M-68K also displays the Option message:

Do you want to Abort (A)» Retry (R) » or Conlinue with bad data (O?

In response to the Option message, you type one of the letters endosed in parentheses

and a RETURN. Table 4-4 describes each of diese options.

Table 4-4. Read-Write Error Message Response Options

Option Action

R

The A Option or CTRL-C aborts the program and returns control to

the CCP. CP/M-68K returns the System prompt (>) preceded by the

drive code.

The R Option retries the Operation that caused the error. For example,

it rereads or rewrites the sector. If the Operation succeeds, program

execution continues as if no error occurred. However, if the Operation

fails, the error message and Option message is displayed again.

The C Option ignores the error that occurred and continues program

execution. The C Option is not an appropriate response for all types

of programs. Program execution should not be continued in some

cases. For example, if you are updating a data base and receive a read

or write error but continue program execution, you can corrupt the

index fields and the entire data base. For other programs, continuing

program execution is recommended. For example, when you transfer

a long text file and receive an error because one sector is bad, you can

continue transferring the file. After the file is transferred, review the

file. Using an editor, add the data that was not transferred due to the
bad sector.

Any response other than an A, R, C, or CTRL-C is invalid. The BDOS reissues the

Option message if you enter any other response.

4-8

DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.2 File Access Functions

The CP/M Disk select error occurs when you select a disk but you receive an error

due to one of the following conditions.

■ You specified a disk drive not supported by the BIOS.

■ The BDOS receives an error from the BIOS.

■ You specified a disk drive outside the ränge A through P.

Before the BDOS issues a read or write function to the BIOS, the BDOS issues a disk

select function to the BIOS. If the BIOS does not support the drive specified in the

function, or if an error occurs, the BIOS returns an error to the BDOS, which in turn,

causes CP/M-68K to display the disk select error at your console. If the error is caused

by a BIOS error, CP/M-68K returns the Option message:

Do youwant to Abort (A) orRetry (R)?

To select one of the options in the message, specify one of the letters enclosed in

parentheses. The A Option terminates the program and returns control to the CCP. The

R Option tries to select the disk again. If the disk select function fails, CP/M-68K

redisplays the disk select error message and the Option message.

However, if the error is caused because you specify a disk drive outside the ränge A

through P, only the CP/M Disk select error is displayed. CP/M-68K aborts the program

and returns control to the CCP.

Your console displays the CP/M Disk change error message when the BDOS detects

the disk in the drive is not the same disk that was logged in previously. Your program

cannot recover from this error. Your program terminates. CP/M-68K returns program

control to the CCP.

You log in a disk by accessing the disk or resetting the disk or disk System. The Select

Disk Function (14) resets a disk. The Reset Disk System Function (13) resets the disk

System. Files cannot be open when your program invokes either of these functions.

You receive the CP/M Disk file error and Option messages (shown below) if you call

the BDOS to write to a file that is set to read-only Status. Either a STAT command or

the BDOS Set File Attributes Function (30) sets a file to read-only Status.

SB DIGITAL RESEARCFT

4-9

4.2 File Access Functions CP/M-68K Programmer's Guide

CP/M Disk file error: ffffffff.ttt is read only.

Do you want to: Chande it to read/write (C) t or Abort (A)?

The variable ffffffff.ttt in the error message denotes the filename and filetype. To seiect

one of the options, specify one of the letters endosed in parentheses. Each Option is

described in Table 4-5.

Table 4-5. Disk File Error Response Options

Option Action

C Changes the Status of this file from read-only to read-write and

continues executing the program that was being processed when this

error occurred.

A Terminates execurion of the program that was being processed and

returns program control to the CCP. The Status of the file remains

read-only. If you enter a CTRL-C, it has the same effect as specifying

the A Option.

CP/M-68K reprompts with the Option message if you enter any response other than

those described above.

4-10
- E DIGITAL RESEAROf-

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.3 Open File Function

FUNCTI0N15: OPEN FILE

Entry Parameters:

Register DO.W:

Register DLL:

Returned Values:

RegisterDO.W:

OFH

FCBAddress

Return Code

success: 00H-03H

error: FFH

The Open File Function matches the filename and filetype fields of the FCB specified

in register DLL with these fields of a directory entry for an existing file on the disk.

When a match occurs, the BDOS sets the FCB extent (ex) field and the second System

(S2) field to zero before the BDOS opens the file. Setting these one-byte fields to zero

opens the file at the base extent, the first extent in the file. In CP/M-68K, files can be

opened only at the base extent. In addition, the physical I/O mapping Information, which

allows access to the disk file through subsequent read and write operations, is copied to

fields dO through dn of the FCB. A file cannot be accessed until it has been opened

successfully. The open funrtion returns an integer value ranging from OOH through 03H

in DO.W when the open Operation is successful. The value FFH is returned in register

DO.W when the file cannot be found.

The question mark (?) wildcard can be specified for the filename and filetype fields of

the FCB referenced by register DLL. The ? wildcard has the value 3FH. For each position

containing a ? wildcard, any character constitutes a match. For example, if the filename

and filetype fields of the FCB referenced by DLL contain only ? wildcards, the BDOS

accesses the first directory entry. However, you should not create a FCB of all wildcards

for this function because you cannot ensure which file this function opens.

Note that the current record field (er) in the FCB must be set to zero by the program

for the first record in the file to be accessed by subsequent sequential I/O functions.

However, setting the current record field to zero is not required to open the file.

DIGITAL RESEARCH™

4-11

4.2 File Access Functions CP/M-68K Programmen Guide

4.2.4 Close File Function

FUNCTION16: CLOSE FILE

Entry Parameters:

Register DO.W: 10H

RegisterDl.L: FCBAddress

Returned Values:

Register DO.W: Return Code

success: 00H-03H

error: FFH

The Close File Function performs the inverse of the Open File Function. When the

FCB passed in DLL was opened previously by either an Open File (15) or Make File

(22) Function, the close function Updates the FCB in the disk directory. The process used

to match the FCB with the directory entry is identical to the Open File Function (15).

An integer value ranging from OOH though 03H is returned in DO.W for a successful

close Operation. The value FFH is returned in DO.W when the file cannot be found in

the directory. When only read functions access a file, closing the file is not required.

However, a file must be dosed to Update its disk directory entry when write functions

access the file.

4-12
DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.5 Search For First Function

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:

Register DO.W: 11H

Register D1 .L: FCB Address

Returned Values:

Register DO.W: Return Code

success: 00H-03H

error: FFH

The Search For First Function scans the disk directory allocated to the current user

number to match the filename and filetype of the FCB addressed in register DLL with

the filename and filetype of a directory entry. The value FFH is returned in register DO.W

when a matching directory entry cannot be found. An integer value ranging from 00H

through 03H is returned in register DO.W when a matching directory entry is found.

The directory record containing the matching entry is copied to the buffer at the

current DMA address. Each directory record contains four directory entries of 32 bytes

each. The integer value returned in DO.W indexes the relative location of the matching

directory entry within the directory record. For example, the value 01H indicates that

the matching directory entry is the second one in the directory record in the buffer. The

relative starting position of the directory entry within the buffer is computed by multiply-

ing the value in DO.W by 32 (decimal), which is equivalent to shifting the binary value

of DO.W left 5 bits.

When the drive (dr) field contains a ? wildcard, the auto disk select function is disabled

and the default disk is searched. AU entries including empty entries for all user numbers

in the directory are searched. The search function returns any matching entry, allocated

or free, that belongs to any user number. An allocated directory entry contains the

filename and filetype of an existing file. A free entry is not assigned to an existing file. If

the first byte of the directory entry is E5H, the entry is free. A free entry is not always

empty. It can contain the filename and filetype of a deleted file because the directory

entry for a deleted file is not zeroed.

m DIGITAL RESEARCH™

4-13

4.2 File Access Funcnons CP/M-68K Programmer's Guide

4.2.6 Search For Next Function

FUNCTION 18:

Entry Parameters:

Register DO.W:

Returned Values:

Register DO.W:

SEARCH FOR NEXT

12H

Return Code

success: 00H-03H

error: FFH

The Search For Next Function scans the disk directory for an entry that matches the

FCB and follows the last matched entry, found with this or the Search For First

Function (17).

A program must invoke a Search For First Function before invoking this function for

the first time. Subsequent Search For Next Functions can follow, but they must be

specified without other disk related BDOS functions intervening. Therefore, a Search

For Next Function must follow either itself or a Search For First Function.

The Search For Next Function returns the value FFH in DO.Wwhen no more direaory

entries match.

B DIGrTAL RESEARCH"1

4-14

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.7 Delete File Function

FUNCTION 19: DELETE FILE

Entry Parameters:

Register DO.W: 13H

Register DLL: FCBAddress

Returned Values:

Register DO.W: Return Code

success: 00H

error: FFH

The Delete File Function removes files and deallocates the directory entries for and

space allocated to files that match the filename in the FCB pointed to by the address

passed in DLL. The filename and filetype can contain wildcards, but the drive select

code cannot be a wildcard as in the Search For First (17) and Search For Next (18)

Functions. The value FFH is returned in register DO.W when the referenced file cannot

be found. The value 00H is returned in DO.W when the file is found.

\

m DIGITAL RESEARCH™

4-15

4.2 File Access Functions CP/M-68K Programmer's Guide

4.2.8 Read Sequential Function

FUNCTION 20:

Entry Parameters:

Register DO.W:

Register DLL:

ReturnedValues:

Register DO.W:

READ SEQUENTIAL

14H

FCBAddress

Return Code

success: 00H

error: 01H

The Read Sequential Function reads the next 128-byte record in a file. The FCB passed

in register DLL must have been opened by an Open File (15) or the Make File Function

(22) before this function is invoked. The program must set the current record field to

zero following the open or make function to ensure the file is read from the first record

in the file. After the file is opened, the Read Sequential Function reads the 128-byte

record specified by the current record field from the disk file to the current DMA buffer.

The FCB current record (er) and extent (ex) fields indicate the location of the record that

is read. The current record field is automatically incremented to the next record in the

extent after a read Operation.

When the current record field overflows, the next logical extent is automatically

opened and the current record field is reset to zero before the read Operation is performed.

After the first record in the new extent is read, the current record field contains the value

01H.

The value 00H is returned in register DO.W when the read Operation is successful.

The value of 01H is returned in DO.W when the record being read contains no data.

Normally, the no data Situation is encountered at the end of a file. However, it can also

oeeur when this function tries to read either a previously unwritten data block or a

nonexistent extent. These situations usually oeeur with flies created or appended with

the BDOS Write Random Function (34).

m DIGITAL RESEARCH*

4-16

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.9 Write Sequential Function

FUNCTION 21:

Entry Parameters:

RegisterDO.W:

Register DLL:

RetumedValues:

RegisterDO.W:

WRITE SEQUENTIAL

15H

FCBAddress

Return Code

success: 00H

error: 01Hor02H

The Write Sequential Function writes a 128-byte record from the DMA buffer to the

disk file whose FCB address is passed in register DLL. The FCB must be opened by

either an Open File (15) or Make File (22) Function before your program invokes the

Write Sequential Function. The record is written to the current record, specified in the

FCB current record (er) field.

The current record field is automatically incremented to the next record. When the

current record field overflows, the next logical extent of the file is automatically opened

and the current record field is reset to zero before the write Operation. After the write

Operation, the current record field in the newly opened extent is set to 01H.

Records can be written to an existing file. However, newly written records can overlay

existing records in the file because the current record field usually is set to zero after a

file is opened or created to ensure a subsequent sequential I/O function accesses the first

record in the file.

The value 00H is returned in register DO.W when the write Operation is successful. A

nonzero value in register DO.W indicates the write Operation is unsuccessful due to one

of the following conditions.

S DIGITAL RESEARCH*

4-17

4.2 File Access Functions CP/M-68K Programmer's Guide

Table 4-6. Unsuccessful Write Operation Return Codes

Value Meaning

01 No available directory space - This condition occurs when the write

command attempts to create a new extent that requires a new directory

entry and no available directory entries exist on the selected disk drive.

02 No available data block — This condition is encountered when the

write command attempts to allocate a new data block to the file and

no unallocated data blocks exist on the selected disk drive.

4-18
38 DIGITAL RESEARCH"

CP/M-68K Programme^ Guide 4.2 File Access Functions

4.2.10 Make File Function

FUNCTION22: MAKE FILE

Entry Parameters:

Register DO.W: 16H

Register DLL: FCB Address

Returned Values:

Register DO.W: Return Code

success: 00H-03H

error: FFH

The Make File Function creates and opens a new file on a specified disk or the default

disk. The address of the FCB for the file is passed in register DLL. You must ensure the

FCB contains a filename that does not already exist in the referenced disk directory. The

drive field (dr) in the FCB indicates the drive on which the directory resides. The disk

directory is on the default drive when the FCB drive field contains a zero.

The BDOS creates the file and initializes the directory and the FCB in memory to

indicate an empty file. The program must ensure that no duplicate filenames occur.

Invoking the Delete File Function (19) prior to the Make File Function excludes the

possibility of duplicate filenames.

Register DO.W contains an integer value in the ränge 00H through 03H when the

function is successful. Register DO.W contains the value FFH when a file cannot be

created due to insufficient directory space.

DIGITAL RESEARCH™

4-19

4.2 File Access Functions CP/M-68K Programmer's Guide

4.2.11 Rename File Function

FUNCTION 23: RENAME FILE

Entry Parameters:

Register DO.W:

Register DLL:

ReturnedValues:

Register DO.W:

17H

FCBAddress

Return Code

success: 00H

error: FFH

The Rename File Function uses the FCB specified in register DLL to change the

filename and filetype of all directory entries for a file. The first 12 bytes of the FCB

contains the file specification for the file to be renamed as shown in Figure 4-1. Bytes 16

through 27 (dO through dl2) contain the new name of the file. The filenames and filetypes

specified must be valid for CP/M. Wildcards cannot be specified in the filename and

filetype fields. The FCB drive field (dr) at byte position 0 selerts the drive. This function

ignores the drive field at byte position 16, if it is specified for the new filename. Register

DO.W contains the value zero when the rename function is successful. It contains the

value FFHwhen the first filename in the FCB cannot be found during the directory scan.

FCB byte position

FCB BYTE POSITION

16 17 18 1« 20 21 22 23

DR | F1 | F2 | F3 | M | F6 | F6 | F7 | F8 | TL | T2 | T3 00 | DI | D2 | D3 | O4 | Da | D6 | DT

J I

OLD FILE SPECIFICATION NEW FILE SPECIFICATION

Figure 4-1. FCB Format for Rename Function

In the above figure, horizontal ellipses indicate FCB fields that are not required for

this function. Refer to Section 4.2.1 for a description of all FCB fields.

4-20
E DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.2 File Access Functions

4.2.12 Set Direct Memory Access (DMA) Address Function

FUNCTION26: SET DMA ADDRESS

Entry Parameters:

Register DO.W: IAH

Register DLL: DMAAddress

ReturnedValues:

Register DO.W: 00H

The Set DMA Address Function sets the starting address of the 128-byte DMA buffer.

DMA is an acronym for Direct Memory Access, which often refers to disk Controllers

that directly access memory to transfer data to and from the disk Subsystem. Many

Computer Systems use non-DMA access in which the data is transferred through pro-

grammed I/O operations. In CP/M the term DMA is used differendy. The DMA address

in CP/M-68K is the beginning address of a 128-byte data buffer, called the DMA buffer.

The DMA buffer is the area in memory where a data record resides before a disk write

Operation and after a disk read Operation. The DMA buffer can begin on an even or odd

address.

DIGITAL RESEARCH™

4-21

4.2 File Access Functions CP/M-68K Programmer's Guide

4.2.13 Set File Attributes Function

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:

Register DO.W: 1EH

Register DLL: FCBAddress

ReturnedValues:

Register DO.W: Return Code

success: 00H

error: FFH

The Set File Attributes Function sets or resets file attributes supported by CP/M-68K

and user defined attributes for application programs. CP/M-68K supports read-only,

System, and archive attributes.

The high bit of each character in the ASCII filename (fl through f8) and filetype

(tl through t3) fieids in the FCB denotes whether attributes are set. When the high bit

in any of these fieids has the value 1, the attribute is set. Table 4-7 denotes the FCB fieids

and their attributes.

The address of the FCB is passed in register DLL. Wildcards cannot be specified in

the filename and filetype fieids.

This function searches the directory on the disk drive, specified in the FCB drive field

(dr), for directory entries that match the FCB filename and filetype fieids. All matching

directory entries are updated with the attributes this function sets.

A zero is returned in register DO.W when the attributes are set. However, if a matching

entry cannot be found, register DO.W contains FFH.

4-22
•E DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.2 File Access Functions

Table 4-7. File Attributes

Field Attribute

f1 through f4 User-defined attributes for application programs.

(5 through f8 Reserved for future use by CP/M-68K.

tl

t2

t3

The Read-Only attribute indicates the file Status is Read-Only. The

BDOS does not allow write commands to write to a file whose Status

is Read-Only. The BDOS does not permit a Read-Only file to be

deleted or renamed.

The System attribute indicates the file is a System file. Some built-in

commands and System Utilities differentiate between System and user

files. For example, the DIRS command provides a directory of System

files. The DIR command provides a directory of user files for the

current user number. For details on these commands, refer to the

CP/M-68K Operating System User's Guide.

The Archive attribute is reserved but not used by CP/M-68K. If set,

it indicates that the file has been written to backup storage by a

user-written archive program. To implement this facility, the archive

program sets this attribute when it copies a file to backup storage; any

programs updating or creating files reset this attribute. The archive

program backs up only those files that have the Archive attribute reset.

Thus, an automatic backup facility restricted to modified files can be

implemented easily.

The Open File (15) and Close File (16) Functions do not use the high bit in the filename

and filetype fields when matching filenames. However, the high bits in these fields should

equal zero when you open a file. Also, the Close File Function does not Update the

attributes in the directory entries when it doses a file.

H DIGITAL RESEARCH"

4-23

4.2 File Access Functions CP/M-68K Programmer's Guide

4.2.14 Read Random Function

FUNCTION 33

Entry Parameters:

RegisterDO.W:

Register DLL:

ReturnedValues:

Register DO.W:

: READ RANDOM

21H

FCB Address

Return Code

success: OOH

error: 01H,03H

04H,06H

The Read Random Function reads records randomly, rather than sequentially. The

file must be opened with an Open File Function (15) or a Make File Function (22) before

this function is invoked. The address of a 36-byte FCB is passed in register DLL. The

FCB random record field denotes the record this function reads. The random record field

is a 24-bit field, with a value ranging from 0OO00H through 3FFFFH. This field spans

bytes rO, rl, and r2 which are bytes 33 through 35 of the FCB. The most significant byte

is first, rO, and the least significant byte, r2, is last. This byte sequence is consistent with

the addressing Conventions for the 68000 nücroprocessor but differs from other versions

ofCP/M.

The random record number must be stored in the FCB random record field before the

BDOS is called to read the record. After reading the record, register DO.W either contains

an error code (see Table 4-8), or the value OOH which indicates the read Operation was

successful. In the latter case, the current DMA buffer contains the randomly accessed

record. The record number is not incremented. The FCB extent and current record fields

are updated to correspond to the location of the random record that was read. A

subsequent Read Sequential (20) or Write Sequential (21) Function Starts from the record

which was randomly accessed. Therefore, the randomly read record is reread when a

program Switches from randomly reading records to sequentially reading records. This

is also true for the Write Random Functions (34,40). The last record written is rewritten

if the program switches from randomly writing records to sequentially writing records

with the Write Sequential Function (21). However, a program can obtain the effect of

sequential I/O operations by incrementing the random record field following each Read

Random Function (33) or Write Random Function (34, 40).

4-24
O DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.2 File Access Functions

Numeric codes returned in register DO.W following a random read Operation are listed

in Table 4-8.

Table 4-8. Read Random Function Return Codes

Code Meaning

00

01

03

04

06

Success- returned in D0.Wwhen the Read Random Function succeeds.

Reading unwritten data - returned when a random read. Operation

accesses a previously unwritten data block.

Cannot close current extent — returned when the BDOS cannot dose

the current extent prior to moving to the new extent containing the

FCB random record number. This error can be caused by an overwrit-

ten FCB or a read random Operation on an FCB that has not been

opened.

Seek to unwritten extent — returned when a random read Operation

accesses a nonexistent extent. This error Situation is equivalent to

error 01.

Random record number out of ränge — returned when the value of

the FCB random record field is greater than 3FFFFH.

m DIGITAL RESEARCH™

4-25

4.2 File Access Funcrions CP/M-68K Programmer's Guide

4.2.15 Write Random Function

FUNCTION 34

Entry Parameters:

RegisterDO.W:

RegisterDLL:

ReturnedValues:

Register DO.W:

: WRITE RANDOM

22H

FCBAddress

Return Code

success: 00H

error: 02H,03H

05H,06H

The Write Random Function writes a 128-byte record from the current DMA address

to the disk file that matches the FCB referenced in register DLL. Before this function is

invoked, the file must be opened with either the Open File Function (15) or the Make

File Function (22).

This function requires a 36-byte FCB. The last three bytes of the FCB contain the

random record field. It contains the record number of the record that is written to the

file. To append to an existing file, the Compute File Size Function (35) can be used to

write the random record number to the FCB random record field. For a new file, created

with the Make File Function (22), you do not need to use the Compute File Size Function

to write the first record in the newly created file. Instead, specify the value 00H in the

FCB random record field. The first record written to the newly created file is zero.

When an extent or data block must be allocated for the record, the Write Random

Function allocates it before writing the record to the disk file. The random record number

is not changed following a Write Random Function. Therefore, a new random record

number must be written to the FCB random record field before each Write Random

Function is invoked.

4-26

m DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.2 File Access Functions

However, the logical extent number and current record field of the FCB are updated

and correspond to the random record number that is written. Thus, a Read Sequential

(20) or Write Sequential (21) Function that follows a Write Random Function, either

rereads or rewrites the record that was accessed by the Read or Write Random Function.

To avoid overwriting the previously written record and simulate sequential write func

tions, increment the random record number after each Write Random Function.

After the Write Random Function completes, register DO.W contains either an error

code (see Table 4-9), or the value 00H that indicates the Operation was successful.

Table 4-9. Write Random Function Return Codes

Code Meaning

00

02

03

05

06

Success — returned when the Write Random Function succeeds with-

out error.

No available date block — occurs when the Write Random Function

attempts to allocate a new data block to the file, but the selected disk

does not contain any unallocated data blocks.

Cannot dose current extent - occurs when the BDOS cannot dose

the current extent prior to moving to the new extent that contains the

record specified by the FCB random record field. This error can be

caused by an overwritten FCB or a write random Operation on an FCB

that has not been opened.

No available directory Space — occurs when the write function at

tempts to create a new extent that requires a new directory entry but

the selected disk drive does not have any available directory entries.

Random record number out of ränge — returned when the value of

the FCB random record field is greater than 3FFFFH.

(Ö DIGITAL RESEARCH™

4-27

42 File Access Functions CP/M-68K Programmer's Guide

4.2.16 Compute File Size Function

FUNCTION 35:

Entry Parameters:

Register DO.W:

RegisterDl.L:

ReturnedValues:

Register DO.W:

COMPUTE FILE SIZE

23H

FCBAddress

00H

success: File Size written to

FCB Random Record

Field

error: Zero written to FCB

RandomRecord Field

The Compute File Size Function computes the size of a file and writes it to the random

record field of the 36-byte FCB whose address is passed in register DLL.

The FCB filename and filetype are used to scan the directory for an entry with a

matching filename and filetype. If a match cannot be found, the value zero is written to

the FCB random record field. However, when a match occurs, the Virtual file size is

written in the FCB random record field.

DIGITAL RESEARCH"

4-28

CP/M-68K Programmer's Guide 4.2 File Access Functions

The Virtual file size is the record number of the record following the end of the file.

The Virtual size of a file corresponds to the physical size when the file is written

sequentially. However, the Virtual file size may not equal the physical file size when the

records in the file were created by random write functions. The Compute File Size

Function computes the file size by adding the value 1 to the record number of last record

in a file. However, for files that contain randomly written records, the fecord number

of the last record does not necessarily indicate the number of records in a file. For

example, the number of the last record in a sparse file does not denote the number of

records in the file. Record numbers for sparse files are not usually sequential. Therefore,

gaps can exist in the record numbering sequence. You can create sparse files with the

Write Random Functions (34 and 40).

In addition to Computing the file size, you can use this function to determine the end

of an existing file. For example, when you append data to a file, this function writes the

record number of the first unwritten record to the FCB random record field. When you

use the Write Random (34) or the Write Random With Zero Fill (40) Function, your

program more efficiently appends data to the file because the FCB already contains the

appropriate record number.

m DIGITAL RESEARCH™

4-29

4.2 File Access Funcrions CP/M-68K Programmer's Guide

4.2.17 Set Random Record Function

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:

Register DO.L: 24H

Register DLL: FCBAddress

ReturnedValues:

Register DO: 00H

Register FCB: RandomRecord Field Set

The Set Random Record Function calculates the random record number of the current

position in the file. The current position in the file is defined by the last Operation

performed on the file. Table 4-10 lists the current position relative to operations per

formed on the file.

Table 4-10. Current Position Definitions

Operation

Openfile

Createfile

Random read

Randomwrite

Sequentialread

Sequential write

Function

OpenFile(15)

Make File (22)

ReadRandom (33)

WriteRandom (34)

Write RandomWith

ZeroFUl(40)

Read Sequential (20)

WriteSequential (21)

CurrentPosition

record 0

record 0

last record read

last record

written

record following

the last record

read

record following

the lastrecord

written

4-30

m DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 4.2 File Access Funcrions

This function writes the random record number in the random record field of the 36-byte

FCB whose address your program passes in register DLL.

You can use this function to set the random record field of the next record your

program accesses when it Switches from accessing records sequentially to accessing them

randomly. For example, your program sequentially reads or writes 128-byte data records

to an arbitrary position in the file that is defined by your program. Your program then

invokes this function to set the random record field in the FCB. The next random read

or write Operation that your program performs accesses the next record in the file.

Another application for this function is to create a key list from a file that you read

sequentially. Your program sequentially reads and scans a file to extract the positions

of key fields. After your program locates each key, it calls this function to compute the

random record position for the record following the record containing the key. To obtain

the random record number of the record containing the key, subtract one from the

random record number that this function calculates. CP/M-68K reads and writes

128-byte records. If your record size is also 128 bytes, your program can insertthe record

position minus one into a table with the key for later retrieval. By using the random

record number stored in the table when your program performs a random read or write

Operation, your program locates the desired record more efficiently.

Note that if your data records are not equal to 128 bytes, your program must störe

the random record number and an offset into the physical record. For example, you

must generalize this scheme for variable-length records. To find the starting position of

key records, your program Stores the buffer-relative position and the random record

number of the records containing keys.

DIGITAL RESEARCH™

4-31

4.2 File Access Functions CP/M-68K Programmer's Guide

4.2.18 Write Random with Zero Fill Function

FUNCTION40: WRITE RANDOM WITH ZERO FILL

Entry Parameters:

Register DO.W: 28H

RegisterDLL: FCB Address

ReturnedValues:

Register DO.W: Return Code

success: 00H

error: 02H,03H

05H,06H

The Write Random With Zero Fill Function, like the Random Write Function (34),

writes a 128-byte record from the current DMA buffer to the disk file. The address of

a 36-byte FCB is passed in register DLL. The last three bytes contain the FCB random

record field. This field specifies the record number of the record that this write random

function writes to the file. Refer to Write Random Function (34) for details on the FCB

and setting its random record field.

Like the Write Random Function, this function allocates a data block before writing

the record when a block is not already allocated. However, in addition to allocating the

data block, this function also initializes the block with zeroes before writing the record.

If your program uses this function to write random records to files, it ensures that the

Contents of unwritten records in the block are predictable.

After the random write function completes, register DO.W contains either an error

code (see Table 4-9), or the value 00H, which indicates the Operation was successful.

4-32
D DIGITAL RESEARCH"

CP/M-68K Progranuner's Guide 4.3 Drive Functions

4.3 Drive Functions

This section describes drive functions that reset the disk System, select and write-

protect disks, and return vectors. They include the functions listed in Table 4-11.

Table 4-11.

Function

Reset Disk System

Select Disk

Return Login Vector

Return Current Disk

Write Protect Disk

Get Read-Only Vector

Get Disk Parameters

Reset Drive

Get Disk Free Space

Drive Functions

Function Number

13

14

24

25

28

29

31

37

46

B DIGITAL RESEARCH-

4-33

4.3 Drive Functions CP/M-68K Programmer's Guide

4.3.1 Reset Disk System Function

FUNCTION 13: RESET DISK SYSTEM

Entxy Parameters:

Register DO.W: ODH

ReturnedValues:

Register DO.W: 00H

The Reset Disk System Function restores the file System to a reset State. All disks are

set to read-write (see Write Protert Disk (28) and Get Read-Only Vector (29) Functions),

and all the disk drives are logged out. This function can be used by an application

program that requires disk changes during Operation. The Reset Drive Funaion (37)

can also be used for this purpose. All files must be closed before your program invokes

this funaion.

4-34

DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.2 Select Disk Function

FUNCTION 14: SELECT DISK

Entry Parameters:

Register DO.W: OEH

RegisterDl.W: DiskNumber

Returned Values:

Register DO.W: 00H

The Select Disk Function designates the disk drive specified in register Dl.W as the

default disk for subsequent file operations. The decimal numbers 0 through 15 cor-

respond to drives A through P. For example, Dl.W contains a 0 for drive A, a 1 for

drive B, and so forth through 15 for a füll 16-drive System. In addition, the designated

drive is logged-in if it is currently in the reset State. Logging in a drive places it in an

on-line Status which activates the drive's directory until the next cold Start, or ResetDisk

System (13) or Reset Drive (37) Function.

When the FCB drive code equals zero (dr = OH), this function references the currently

selected drive. However, when the FCB drive code value is between 1 and 16, this

function references drives A through P.

If this function fails, CP/M-68K returns a CP/M Disk select error, which is described

in Section 4.2.2.

DIGITAL RESEARCH™

4-35

4.3 Drive Functions CP/M-68K Programmer's Guide

4.3.3 Return Login Vector Function

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:

Register DO.W: 18H

ReturnedValues:

Register DO.W: Login Vector

The Return Login Vector Function returns in register DO.W a 16-bitvalue that denotes

the log-in Status of the drives. The least significant bit corresponds to the first drive A,

and the high order bit corresponds to the sixteenth drive, labeled P. Each bit has a value

of zero or one. The value zero indicates the drive is not on-line. The value one denotes

the drive is on-line. When a drive is logged in, its bit in the log-in vector has a value of

one. Explicitly or implicitly logging in a drive sets its bit in the log-in vector. The Select

Disk Function (14) explicitly logs in a drive. File operations implicitly log in a drive

when the FCB drive field (dr) contains a nonzero value.

4-36

DIGnAL RESEARCH"

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.4 Return Current Disk Function

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:

Register DO.W: 19H

ReturnedValues:

Register DO.W: Current Disk

The Return Current Disk Function returns the current default disk number in register

DO.W. The disk numbers ränge from 0 through 15, which correspond to drives Athrough

P. Note that this numbering Convention differs from the FCB drive field, which specifies

integers 1 through 16 correspond to drives labeled A through P.

® DIGITAL RESEARCH™

4-37

4.3 Drive Funcrions CP/M-68K Programraer's Guide

4.3.5 Write Protect Disk Function

FUNCTION28: WRITE PROTECT DISK

Entry Parameters:

RegisterDO.W: ICH

ReturnedValues:

Register DO.W: 00H

The disk write protect function provides temporary write protection for the currently

seleaed disk. Any attempt to write to the disk, before the next cold Start, warm Start,

disk System reset, or drive reset Operation produces the message:

Disk chande error on drive x

Yourprogram terminates when this error occurs. Program control returns to the CCP.

4-38
■K DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.6 Get Read-Only Vector Function

FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:

Register DO.W: 1DH

ReturnedValues:

Register DO.W: Read-Only

Vector Value

The Get Read-Only Vector Function returns a 16-bit vector in register DO.W. The

vector denotes drives that have the temporary read-only bit set. Similar to the Return

Login Vector Function (24), the least significant bit corresponds to drive A, and the most

significant bit corresponds to drive P. The Read-Only bit is set either by an explicit call

to the Write Protect Disk Function (28), or by the automatic Software mechanisms within

CP/M-68K that detect changed disks.

DIGITAL RESEARCH"

4-39

4.3 Drive Functions CP/M-68K Programmer's Guide

4.3.7 Get Disk Parameters Function

FUNCTION 31: GET DISK PARAMETERS

Entry Parameters:

Register DO.W: 1FH

Register DLL: CDPBAddress

Returned Vaiues:

Register DO.W: 00H

CDPB: Contains DPBVaiues

The Get Disk Parameters Function writes a copy of the 16-byte BIOS Disk Parameter

Block (DPB) for the current default disk, called the CDPB, at the address specified in

register DLL. Figure 4-2 illustrates the format of the DPB and CDPB. The vaiues in the

CDPB can be extracted and used for display and Space computation purposes. Normally,

application programs do not use this function. For more details on the BIOS DPB, refer

to the CP/M-68K Operating System System Guide.

SPT BSH BLM EXM RES DSM DRM RES CKS OFF

I 8 I 16 I 16 I 16 | 16 16 I

Figure 4-2. DPB and CDBP

4-40
DIGITAL RESEARCH™

CP/M-68K Progranuner's Guide 4.3 Drive Functions

Table 4-12 lists the fields in the DPB and CDPB.

Table 4-12. Fields in the DPB and CDPB

Field

SPT

BSH

BLM

EXM

RES

DSM

DRM

RES

CKS

OFF

Description

Number of 128-byte logical sectors per track

Block shift factor

Block mask

Extent mask

Reserved byte

Total number of blocks on the disk

Total number of direaory entries on the disk

Reserved for System use

Length (in bytes) of the checksum vector

Track offset to disk directory

DIGITAL RESEARCH*"

4-41

4.3 Drive Functions CP/M-68K Programmcr's Guide

4.3.8 Reset Drive Function

FUNCTION 37: RESET DRIVE

Entry Parameters:

Register DO.W: 25H

Register Dl.W: Drive Vector

Returned Values:

Register DO.W: OOH

The Reset Drive function restores specified drives to the reset State. A reset drive is

not logged-in and its Status is read-write. Register Dl.W contains a 16-bit vector

indicadng the drives this funaion resets. The least signiHcant bit corresponds to the first

drive, A. The high order bit corresponds to the sixteenth drive, labeled P. Bit values of

1 indicate the drives this funaion resets.

To maintain compatibility with other Digital Research operadng Systems, this function

returns the value zero in register DO.W.

4-42
B DIGITAL RESEARCH-

CP/M-68K Programmer's Guide 4.3 Drive Functions

4.3.9 Get Disk Free Space Function

FUNCTION 46: GET DISK FREE SPACE

Entry Parameters:

Register DO.W: 2EH

Register Dl.W: DiskNumber

ReturnedValues:

Register DO.W: 00H

DMA Buffer: Free Sector Count

The Get Free Disk Space Function returns the free sector count, the number of free

128-byte sectors on a specified drive, in the first four bytes of the current DMA buffer.

The drive number is passed in register Dl.W. CP/M-68K assigns disk numbers sequen-

tially from 0 through 15 (decimal). Each number corresponds to a drive in the ränge A

through P. For example, the disk number for drive A is 0 and for drive B, the number is 1.

Note that these numbers do not correspond to those in the drive field of the FCB. The

FCB drive field (dr) uses the numbers 1 through 16 (decimal) to designate drives.

DIGITAL RESEARCH™

4-43

4.4 Charaaer I/O Functions CP/M-68K Programmer's Guide

4.4 Character I/O Functions

Charaaer I/O functions read or write characters serially to a peripheral device.

Character I/O functions supported in CP/M-68K are described in this seaion and listed

in Table 4-13.

Table 4-13. Charaaer I/O Functions

Function Function Nutnber

Console Operations

Consolelnput

Console Output

Direa Console I/O

PrintString

Read Console Buffer

Get Console Status

1

2

6

9

10

11

Additional Serial I/O

Auxiliarylnput

Auxiliary Output

List Output

3

4

5

I/O Byte

GetI/O Byte

Set I/O Byte

7

8

4-44

DIGITAL RESEARCH™

CP/M-68K Programmer's Guide
4.4 Character I/O Funcrions

4.4.1 Console I/O Funcrions

Ulis section describes functions that read from, write to, and report the Status of the

logical device CONSOLE.

Console Input Function

FUNCTION 1: CONSOLE INPUT

Entry Parameters:

RegisterDO.W: 01H

ReturnedValues:

RegisterDO.W: ASCII Character

The Console Input function reads the next character from the logical console device

(CONSOLE) to register DO.W. Printable characters, along with carriage return, line

feed, and backspace (CTRL-H), are echoed to the console. Tab characters (CTRL-I) are

expanded into columns of eight characters. Other CONTROL characters, such as

CTRL-C, are processed. The BDOS does not return to the calling program until a

character has been typed. Thus, execurion of the program is suspended until a character

is ready.

DIGITAL RESEARCH"

4-45

4.4 Charactcr I/O Functions CP/M-68K Programmer's Guide

Console Output Function

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:

RegisterDO.W: 02H

RegisterD1.W: ASCII Character

Returned Values:

Register DO: 00H

The ASCII charaaer from Dl.W is sent to the logical console. Tab characters expand

into coiumns of eight characters. In addition, a check is made for stop scroll (CTRL-S),

start scroll (CTRL-Q), and the printer switch (CTRL-P). This function also processes

CTRL-C, which aborts the Operation and warm boots the System. If the console is busy,

execution of the calling program is suspended until the console accepts the charaaer.

DIGITAL RESEARCH"

4-46

CP/M-68K Programmer's Guide 4.4 Character I/O Funcrions

Direct Console I/O Function

FUNCTION 6:

Entry Parameters:

Register DO.W:

Register Dl.W:

Returned Values:

Register DO.W:

DIRECT CONSOLE I/O

06H

OFFH (input)

OFEH (status)

or

Character (output)

Character or Status

Direct Console I/O is supported under CP/M-68K for those speciaiized applications

where character-by-character console input and Output are required without the control

character functions CP/M-68K Supports. This function bypasses all of CP/M-68K's

normal CONTROL character functions such as CTRL-S, CTRL-Q, CTRL-P, and

CTRL-C.

Upon entry to the Direct Console I/O Function, register Dl.W contains one of the

following values.

DIGITAL RESEARCH*

4-47

4.4 Character I/O Functions CP/M-68K Programmer's Guide

Table 4-14. Direct Console I/O Function Values

Value Meaning

FFH denotes a CONSOLE input request

FEH denotes a CONSOLE Status request

ASCII

character Output to CONSOLEwhere CONSOLE is the logical console device

When the input value is FFH, the Direct Console I/O Function calls the BIOS Conin

Function, which returns the next console input character in DO.W but does not echo the

character on the console screen. The BIOS Conin function waits until it receives a

charaaer. Thus, execution of the calling program remains suspended until a character

is ready.

When the input value is FEH, the Direct Console I/O Function returns the Status of

the console input in register DO.W. When register DO.W contains the value zero, no

console input exists. However, when the value in DO.W is nonzero, console input is

ready to be read by the BIOS Conin Function.

When the input value in Dl.W is neither FEH nor FFH, the Direct Console I/O

Function assumes that Dl.W contains a valid ASCII character, which is sent to the

console.

4-48

SS DIGITAL RESEARCH*

CP/M-68K Programm«-'* Guide 4.4 Character I/O Functions

Print String Function

FUNCTION 9: PRINT STRING

Entry Parameters:

Register DO.W: 09H

Register DLL: StringAddress

Returned Values:

Register DO.W: 00H

The Print String function sends the character string stored in memory at the location

given in register DLL to the logical console device (CONSOLE) until a dollar sign ($)

is encountered in the string. Tabs are expanded as in the Console Output Function (2),

and checks are made for stop scroll (CTRL-S), Start scroll (CTRL-Q), and the printer

switch (CTRL-P).

DIGITAL RESEARCH"

4-49

4.4 Character I/O Functions CP/M-68K Programmer's Guide

Read Console Buffer Function

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:

Register DO.W: OAH

RegisterDLL: BufferAddress

Returned Values:

Register DO.W: 00H

Register Buffer: Character Count

and Characters

The Read Buffer function reads a line of edited console input from the logical console

device (CONSOLE) to a buffer address passed in register DLL. Console input is

terminated when the input buffer is filled, or, a RETURN (CTRL-M) or a line feed

(CTRL-J) character is entered. The input buffer addressed by DLL takes the form:

DLL: +0 +1 +2 +3 +4 +5 +6 +7 +8 + n

mx nc cl c2 c3 c4 c5 c6 c7

The variable mx is the maximum number of characters the buffer holds. The variable

nc is the total number of characters placed in the buffer. Your program must set the

mx value prior to invoking this function. The mx value can ränge in value from 1 through

255 (decimal). The characters entered from the keyboard follow the ncvalue. Thevaluenc

is returned to the buffer. It can ränge from 0 to the value of mx. If the nc value is less

than the mx value, uninitialized characters follow the last character. Uninitialized

characters are denoted by the double question marks (??) in the above figure. A terminat-

ing RETURN or line feed character is not placed in the buffer and is not induded in the

total character count nc.

This function supports several editing control functions, which are briefly described

inTable4-15.

4-50
m DIGITAL RESEARCH*"

CP/M-68K Programmer's Guide 4.4 Character I/O Functions

Table 4-15. Line Editing Controls

Keystroke

RUB/DEL

CONTROL-C

CONTROL-E

CONTROL-H

CONTROL-J

CONTROL-M

CONTROL-P

CONTROL-Q

CONTROL-R

CONTROL-S

CONTROL-U

CONTROL-X

Result

removes and echoes the last character

reboots when it is the first character on a line

causes physical end-of-line

backspaces one character position

(line-feed) terminates input line

(return) terminates input line

Starts and stops the echoing of console Output to the logical LIST

device

restarts console I/O after CTRL-S halts it

retypes the current line on the next line

halts console I/O and waits for CTRL-Q to restart it

echoes a pound sign (#) indicating ignore characters previously

inputon the current line before it positions the Cursoron the next line

backspaces to beginning of current line

Certain functions that position the Cursor to the leftmost position (for example,

CONTROL-X) move the Cursor to the column position where the Cursor was prior to

invoking the Read Console Buffer Function. This Convention makes your data input and
line correction more legible.

m DIGITAL RESEARCH*"

4-51

4.4 Character I/O Functions CP/M-68K Programmer's Guide

Get Console Status Function

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:

RegisterDO.W: OBH

Returned Values:

Register DO.W: Console Status

The Get Console Status Function checks whether a character has been typed at the

logical console device (CONSOLE). If a charaaer is ready, a nonzero value is returned

in register DO.W; otherwise the value OOH is returned in DO.W.

4-52
m DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 4.4 Character I/O Functions

4.4.2 Additional Serial I/O Functions

This section describes additional serial I/O functions that read and write data to devices

defined by I/O Byte Functions (7,8).

Auxiliary Input Function

FUNCTION 3: AUXILIARY INPUT

Entry Parameters:

Register DO/W: 03H

Returned Values:

Register DO.W: ASCII Character

The Auxiliary Input function reads the next character from the auxiliary input device

into register DO.W. Execution of the calling program remains suspended until the

character is read. This function assumes the BIOS implements its Auxiliary Input

Function. When more than one auxiliary input port exists, the BIOS should implement

the I/O Byte Function. For details on the BIOS Auxiliary Input and I/O Byte Functions,

refer to the CP/M-68K Operating System System Guide.

DIGITAL RESEARCH™

4-53

4.4 Character I/O Functions CP/M-68K Programmer's Guide

Auxiliary Output Function

FUNCTION 4: AUXILIARY OUTPUT

Entry Parameters:

Register DO.W: 04H

Register D1.W: ASCII Character

Returned Values:

Register DO.W: 00H

The Auxiliary Output function sends a character from register Dl.W to the auxiliary

Output device. Execution of the calling program remains suspended until the hardware

buffer receives the Output character. This function assumes the BIOS implements its

Auxiliary Output Function. When more than one auxiliary Output port exists, the BIOS

should implement the I/O Byte Function. For details on the BIOS Auxiliary Output and

I/O Byte Functions, refer to the CP/M-68K Operating System System Guide.

4-54
DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.4 Character I/O Functions

List Output Function

FUNCTION 5: LIST OUTPUT

Entry Parameters:

RegisterDO.W: 05H

Register D1.W: ASCII Character

ReturnedValues:

RegisterDO.W: 00H

The List Output function sends the ASCII character in register Dl.W to the logical

list device (LIST).

4.4.3 I/O Byte Functions

This section describes the I/O Byte Functions. The I/O Byte is an 8-bit value that assigns

physical devices, represented by 2-bit fields, to each of the logical devices: CONSOLE,

AUXILIARY INPUT, AUXILIARY OUTPUT, and LIST as shown in Figure 4-3. The

I/O Byte functions allow programs to access the I/O byte to determine its current value

(Get I/O Byte) or to modify it (Set I/O Byte). These functions are valid only if the BIOS

implements its I/O Byte Function. Refer to the CP/M-68K Operating System System

Guide for details on implementing the I/O Byte Function.

I/O BYTE

BITS

MOST SIGNIFICANT LEAST SIGNIFICANT

LIST AUXILIARY OUTPUT AUXILIARY INPUT CONSOLE

7.6 5.4 3,2 1.0

Figure 4-3. I/O Byte

DIGITAL RESEARCH™

4-55

4.4 Character I/O Functions CP/M-68K Programmer's Guide

The value in each field ranges from 0-3. The value defines the assigned source or

destination of each logical device, as shown in Table 4-16.

Table 4-16. I/O Byte Field Definitions

CONSOLE field (bits 1,0)

0 - console is assigned to the console printer (TTY:)

1 - console is assigned to the CRT device (CRT:)

2 - batch mode: use the AUXILIARY INPUT as the CONSOLE input, and the

LIST device as the CONSOLE Output (BAT:)

3 - user defined console device (UC1:)

AUXILIARY INPUT field (bits 3,2)

0 - AUXILIARY INPUT is the Teletype device (TTY:)

1 - AUXILIARY INPUT is the high-speed reader device (PTR:)

2 - user defined reader # 1 (UR1:)

3 - user defined reader # 2 (UR2:)

AUXILIARY OUTPUT field (bits 5,4)

0 - AUXILIARY OUTPUT is the Teletype device (TTY:)

1 - AUXILIARY OUTPUT is the high-speed punch device (PTP:)

2 - user defined punch # 1 (UPI:)

3 - user defined punch # 2 (UP2:)

LIST field (bits 7,6)

0 - LIST is the Teletype device (TTY:)

1 - UST is the CRT device (CRT:)

2 - LIST is the line printer device (LPT:)

3 - user defined list device (ULI:)

The impleroentation of the BIOS I/O Byte Function is optional. PIP and STAT are the

only CP/M-68K Utilities that use the I/O Byte. PIP accesses physical devices. STAT

designates and displays logical to physical device assignments. For details on implement-

ing the I/O Byte Funaion, refer to the CP/M-68K Operating System System Guide.

4-56
DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.4 Character I/O Functions

Get I/O Byte Function

FUNCTION 7: GET I/O BYTE

Entry Parameters:

Register DO.W: 07H

Returned Values:

Register DO.W: I/O Byte Value

The Get I/O Byte Funrtion returns the current value of I/O Byte in register DO.W. The

I/O Byte contains the current assignments for the logical devices CONSOLE,

AUXILIARY INPUT, AUXILIARY OUTPUT, and LIST. Note that this function is valid

only if the BIOS implements its I/O Byte Function. Refer to the CP/M-68K Operating

System System Guide for details on implementing the BIOS I/O Byte Function.

iß DIGITAL RESEARCH"

4-57

4.4 Character I/O Functions CP/M-68K Programmer's Guide

Set I/O Byte Function

FUNCTION 8: SET I/O BYTE

Entry Parameters:

Register DO.W: 08H

RegisterDl.W: I/O Byte Value

ReturnedValues:

RegisterDO.W: 00H

The Set I/O Byte Function changes the System I/O Byte value to the value passed in

register Dl.W. This function allows programs to modify the current assignments for the

logical devices CONSOLE, AUXILIARY INPUT, AUXILIARY OUTPUT, and LIST in

the I/O Byte. This function is valid only if the BIOS implements its I/O Byte Function.

Refer to the CP/M-68K Operating System System Guide for details on implementing

the I/O Byte Function.

4.5 System/Program Control Functions

The System and program control functions described in this section warm boot the

System, return the operating System Version number, call the Basic I/O System (BIOS)

functions, and terminate and load programs. These functions are Iisted in Table 4-17.

Table 4-17. System and Program Control Functions

Function

System Reset

Return Version Number

Set/Get User Code

ChainToProgram

Flush Buffers

Direa BIOS Call

Program Load

Function Number

0

12

32

47

48

50

59

4-58
DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 4.5 System/Program Control Functions

4.5.1 System Reset Function

FUNCTION 0: SYSTEM RESET

Entry Parameters:

Register DO.W: 00H

Returned Values: Function DoesNot Return

to Caliing Program

The System Reset Function terminates the current program and returns program

control to the CCP command level.

\

DIGITAL RESEARCH™

4-59

4.5 System/Program Control Functions CP/M-68K Programmer's Guide

4.5.2 Return Version Number Function

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:

Register DO.W: OCH

Returned Values:

Register DO.W: Version Number

The Return Version Number Function provides information that aliows version

dependent programming. The one-word value 2022H is the version number returned in

register DO.W for Release 1.1 of CP/M-68K. Table 4-18 lists the version numbers this

function returns for Digital Research operating Systems.

4-60

SB DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 4.5 System/Program Control Functions

Table4-18. Version Numbers

Operating System

CP/M-68K

CP/M-80

CP/M-80

CP/M-80

MP/M-80™

MP/M-80

MP/M-80

CP/M-86

CP/M-86

MP/M-86™

MP/M-86

Concurrent CP/M-86™

(for the IBM®

Personal Computer)

Concurrent CP/M-86

Version

1.1

1.4

2.2

3.0

1.1

2.0

2.1

1.0

1.1

2.0

2.1

1.0

2.0

Version Number

2022H

0014H

0022H

0031H

0122H

0130H

0130H

1022H

1022H

1130H

1130H

1430H

1431H

Add the hexadecimai value 0200 to any version number when the System implements

CP/NET®. For example, CP/M-80 Release 2.2 returns the version 0222H when the

System implements CP/NET.

DIGITAL RESEARCH™

4-61

4.5 System/Program Control Funcrions CP/M-68K Programmcr's Guide

4.5.3 Set/Get User Code

FUNCTION32:

Entry Parameters:

Register DO.W:

Register Dl.W:

ReturnedValues:

Register DO.W:

SET/GET USER CODE

20H

FFH(get)

or

User Code (set)

Current User Number

An application program can change or obtain the currently active user number by

calling the Set/Get User Code Function. If the value in register Dl.W is FFH, the value

of the current user number is returned in register DO.W. The value ranges from 0 to 15

(decimal). If register Dl.W contains a value in the ränge 0 through 15 (decimal), the

current user number is changed to the value in register Dl.W. When. the program

terminates and control returns to the CCP, the user number reverts to the BDOS default

user number. The BDOS assumes the default is zero unless you explicitly specify the

USER command to set an alternate default.

4-62

■ B DICFTAL RESEAROT"

CP/M-68K Programmer's Guide 4.5 System/Program Control Functions

4.5.4 Chain To Program Function

FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters:

Register DO.W: 2FH

Returned Values:

Register DO.W: Function DoesNot Return

to Calling Program

\

The Chain To Program Function terminates the current program and executes the

command line stored in the current DMA buffer. The format of the command line

consists of a one-byte character count (N), the command line characters, and a null byte

as shown in Figure 4-4. The character count contains the number of characters in the

command line. The count must be no more than 126 characters. If an error occurs, you

receive one of the CCP errors described in Appendix E.

N COMMAND LINE (N CHARACTERS)

1 BYTE N BYTES < 126 BYTES 1 BYTE

Figure 4-4. Command Line Format in the DMA Buffer

DIGITAL RESEARCH"

4-63

4.5 Systcm/Program Control Functions CP/M-68K Programmcr's Guide

4.5.5 Flush Buffers Function

FUNCTION 48: FLUSH BUFFERS

Entry Parameters:

Register DO.W: 30H

ReturnedValues:

RegisterDO.W: Return Code

success: 00H

error: nonzero value

The Flush Buffers Function calls a BIOS Flush Buffers Function (21), which forces the

System to write the Contents of any unwritten or modified disk Buffers to the appropriate

disks. Control and editing applications use this function to ensure data is periodically

physically written to the appropriate disks. When the Buffers are successfully flushed,

this function retums the value 00H in register DO.W. However, if an error occurs, and

this function does not complete successfully, this function returns a nonzero value in

register DO.W.

DIGITAL RESEARCH**

4-64

CP/M-68K Programmer's Guide 4.5 System/Program Control Functions

4.5.6 Direct BIOS Call Function

FUNCTION 50: DIRECT BIOS CALL

Entry Parameters:

Register DO.W: 32H

RegisterDl.L: BPBAddress

ReturnedValues:

Register DO.L: BIOS Return Code (if any)

Function 50 allows a program to call a BIOS function and transfers control through

the BDOS to the BIOS. The DLL register contains the address of the BIOS Parameter

Block (BPB), a 5-word memory area containing two BIOS function parameters, Pl and

P2, as shown in Figure 4-5. When a BIOS function returns a value, it is returned in

register DO.L.

Like other BDOS functions, your program must specify a Trap 2 Instruction to invoke

this BDOS function after the registers are loaded with the appropriate parameters. The

starting location of the BPB must be an even-numbered address.

DIGITAL RESEARCH™

4-65

4.5 System/Program Control Functions CP/M-68K Programmer's Guide

FIELD

FUNCTION NUMBER

VALUE P1

VALUE P2

SIZE

1 WORD

1 LONGWORD

1 LONGWORD

Figure 4-5. BIOS Parameter Block (BPB)

In the above figure, the function number is a BIOS funaion number. See Appendix A.

The two values, Pl and P2, are 32-bit BIOS parameters, which are passed in registers

DLL and D2.L before your program invokes the BIOS function. Appendix A contains

a list of BIOS functions. For more details on BIOS functions, refer to the CP/M-68K

Operating System System Guide.

DIGITAL RESEARCH™

4-66

CP/M-68K Programm«-'* Guide 4.5 System/Program Control Funcrions

4.5.7 Program Load Function

FUNCTION 59: PROGRAM LOAD

Entry Parameters:

RegisterDO.W: 3BH

RegisterDl.L: LPB

ReturnedValues:

RegisterDO.W: Return Code

success: 00H

error: 01H-03H

The Program Load function loads an executable command file into memory. In

addition to the function code, passed in register DO.W, the address of the Load Parameter

Block (LPB) is passed in register DLL. After a program is loaded, the BDOS returns one

of the following return codes in register DO.W.

Table 4-19. Program Load Function Return Codes

Code Meaning

00

01

02

03

the function is successful

insufficient memory exists to load the file or the header is bad

a read error occurs while the file is loaded in memory

bad relocation bits exist in the program file

DIGITAL RESEARCI-P

4-67

4.5 Systcm/Program Control Functions CP/M-68K Programmer's Guide

The LPB describes the program and denotes the address at which it is loaded. The

format of the LPB is outlined in Figure 4-6. The starting location of the LPB must be an

even-numbered address.

BYTE

OFFSET CONTENT

OH

4H

8H

CH

10H

14H

ADDRESS OF FCB OF SUCCESSFULLY OPENED PROGRAM FILE

LOWEST ADDRESS OF AREA IN WHICH TO LOAD PROGRAM

HIGHEST ADDRESS OF AREA IN WHICH TO LOAD PROGRAM +1

ADDRESS OF BASE PAGE (RETURNED BY BDOS)

DEFAUT USER STACK POINTER (RETURNED BY BDOS)

LOADER CONTROL FLAGS |

SIZE

1 LONGWORD

1 LONGWORD

1 LONGWORD

1 LONGWORD

1 LONGWORD

1 WORD

Figure 4-6. Format of the Load Parameter Block (LPB)

Before a program specifies the Program Load function, the file must be opened with

an Open File Function (15). The memory addresses specified for the program in the LPB

must lie within the TPA. When the CCP calls the Program Load function to load a

transient program, the LPB addresses are the boundaries of the TPA.

4-68

ü DIGITAL RESEARCH"

CP/M-68K Progranuner's Guide 4.5 System/Program Control Functions

The loader control flags in the LPB select loader options as shown in Table 4-20.

Table 4-20. Load Parameter Block Options

BitNumber

0 (leastsignificantbyte)

1 -15 (decimal)

Value

0

1

0

Meaning

load program in the lowest possible part

of the supplied address space

load program in the highest possible

part ofthe supplied address space

Reserved, should be set to zero.

The CCP uses the Program Load Function to load a command file. The CCP places a

return address to itself on the top of the Stack for the program being loaded. The program

can exit and return to the CCP by performing a Return from Subroutine (RTS) instruc

tion. However, if the program modifies the Stack, it must reset the top of the Stack to

point to the CCP address before the program executes a RTS instruction. The CCP also

places the base page address on the program's Stack. The base page address is located

four bytes from the address pointed to by register A7, the Stack pointer. The assembly

language notation for this offset is 4(A7) or 4{sp). The format of the base page is outlined

in Appendix C.

The BDOS allocates memory for the base page within the limits set by the low and

high addresses in the LPB and returns the address of the allocated base page in the LPB.

Locations 0000H - 0024H ofthe base page are initialized by the BDOS. Locations 0025H

through 0037H are not initialized but are allocated and reserved by the BDOS. The CCP

initializes the remaining base page values when it loads a program.

The BDOS allocates a user Stack in the TPA normally at the highest address. The value

of the initial Stack pointer is passed to the LPB by the BDOS.

O DIGITAL RESEAROT

4-69

4.5 System/Program Control Functions CP/M-68K Programmer's Guide

For programs loaded by a transient program rather than the CCP, refer to Section 2.2.3.

Appendix B contains two exampies, an assembly language program and a C language

program, that illustrate how a transient program loads another program with the

Program Load Function but without the CCP.

4.6 Exception Functions

This section describes the Set Exception (61), Set Supervisor State (62), and the Get/Set

TPA Limits Functions that set exceptions for error handling and other exception

processing.

4-70
ßü DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 4.6 Exception Functions

4.6.1 Set Exception Vector Function

FUNCTION 61: SET EXCEPTION VECTOR

Entry Parameters:

Register DO.W: 3DH

Register DLL: EPB Address

Returned Values:

Register DO.W: Return Code

success: 00H

error: FFH

The Set Exception Vector Function allows a program to reset current exception

vectors, set new exception vectors, and create exception handlers for the 68000

microprocessor.

In addition to passing the function number in register DO.W, a program must pass

the address of the Exception Parameter Block (EPB) in register DLL. The EPB is a 10-byte

data structure containing a .one-word vector number and two longword vector values.

See Figure 4-7. The EPB specifies the exception and the address of the new exception

handler. Table 4-21 lists valid exceptions that correspond to 68000 microprocessor

hardware. The starting location of the EPB must be an even-numbered address.

FIELD

VECTOR NUMBER

NEW DEFINED VECTOR VALUE

OLD VECTOR VALUE RETURNED BY BDOS

SIZE

1 WORD

1 LONGWORD

1 LONGWORD

Figure 4-7. Exception Parameter Block (EPB)

4.6 Exceprion Functions CP/M-68K Programmer's Guide

The vector number identifies the exception. The New Vector Value specifies the

address of the new exception handler for the specified exception. The BDOS returns in

the Old Vector Value Field, the value that the exception vector contained before this

function was invoked. The BDOS replaces the old vector value with the new vector value

in its table of exception handlers and returns the address of the old exception handler

to the old vector value in the EPB. After the BDOS sets the new exception vector, it

passes the value 00H in register DO.W. However, if an error, such as a bad vector, occurs

while the vector is being set, this function passes the value FFH in register DO.W. The

bad vector error occurs when a vector other than one listed in Table 4-21 is specified

for this function.

When an exception occurs, before the BDOS passes control to an exception handler,

the BDOS restores the System State (user or Supervisor) to the State of the System before

it incurred the exception. To return from an exception handler to the normal processing

State, the last instruction an exception handler executes is a Return and Restore (RTR)

instruction.

Bus and address errors require Special handling because they push four additional

words onto the Stack. For example, when a bus error occurs, the System pushes flags,

the access address, and the instruction register onto the Stack. An exception handler

must pop these off the Stack before it executes a RTR instruction.

If an exception handler does not exist for an exception, when that exception occurs,

the BDOS default exception handler returns an exception message to the logical console

device (CONSOLE) before it aborts the program. The BDOS exception message format

is defined as follows.

Exception nn at user address aaaaaaaa. Aborted.

where:

nn is a hexadecimal number in the ränge 2 through 17 or 24 through 2F that

defines all exceptions excluding reset, hardware Interrupts, and System

Traps 0 through 3.

aaaaaaaa . is the address of the instruction following the one that caused the

exception.

m DIGITAL RESEARCH"

4-72

CP/M-68K Programmer's Guide 4.6 Exception Functions

Except for exceptions handled by resident System extensions (RSXs), the BDOS

reinitializes all vectors to the default exception handler when the BDOS System Reset

Function (0) is invoked. Any exception vectors, which your program sets, are reset after

the BDOS warm boots the System. An RSX is a program that is not configured in the

operating System but remains resident in memory after it is loaded. RSXs normally

provide additional System functions. The Get/Set TPA Limits Function (63) allows you

to create an area in the TPA in which one or more RSXs can reside.

Table 4-21.

Vector

1

3

4

5

6

7

8

9

10

11

32*

33*

36**

37**

38**

39**

Valid Vectors and Exceptions

Exception

BusError

Address Error

Illegal Instruction

Zero Divide

CHK Instruction

TRAPV Instruction

Privilege Violation

Trace

Line 1010 Emulator

Line 1111 Emulator

TrapO

Trapl

Trap4

Trap5

Trap6

Trap7

Vectors reserved for Resident System Extensions (RSX) implemented with the

Get/Set TPA Limits Function (63).

Recommended Trap vectors for applications.

a DIGITAL RESEARCH™ -

4-73

4.6 Exception Functions CP/M-68K Programmer's Guide

4.6.2 Set Supervisor State

FUNCTION62: SET SUPERVISOR STATE

Entry Parameters:

Register DO.W: 3EH

ReturnedValues:

RegisterDO.W: 00H

The Set Supervisor Function puts the caliing program in Supervisor State. This function

should not be used by novice programmers and experienced programmers should be

careful when invoking this function.

The user Stack is swapped when the program enters Supervisor State. On return from

this function, the Stack pointer, register A7, is the Supervisor Stack pointer and not the

user Stack pointer. Thus, you cannot use register A7 to reference the user Stack.

The Supervisor Stack is used by the BDOS and BIOS. This Stack is 300 longwords or

1200 bytes long. The percent of the Stack used by the System is dependent on the

Operation being performed and those previously performed. Therefore, you cannot

predict how much of the Stack is available for program operations. To avoid Stack

overflow and overwriting the System» you should not push more than a few dozen bytes

onto the Stack, especially when you call BDOS and BIOS functions.

An alternate method of avoiding Stack overflow is to switch to a private Supervisor

Stack. You create the Stack by loading into A7 the address of an area in memory that

you use as the Supervisor Stack. The address must be an even address. If you call BDOS

and BIOS functions, your private Supervisor Stack should be 300 longwords, more than

the space required by the program. If your program exits Supervisor mode, make sure

your program restores the System Stack pointer to its original value. The Supervisor Stack

is reinitialized when the System warm boots.

Note that in future CP/M-68K upward compatible Systems, this function may not

exist, or will require privilege for the caliing process to access this function, or the

function will fail. If it fails the value FFH will be passed to DO.W. However, no privilege

is currently necessary. The function is always successful and the value 00H is passed in

register DO.W.

DIGITAL RESEARCH"

4-74

CP/M-68K Programmer's Guide 4.6 Exceprion Functions

4.6.3 Get/Set TPA Limits

•\
FUNCTION 63: GET/SET TPA LIMITS

Entry Parameters:

Register DO.W: 3FH

Register DLL: TPAB Address

ReturnedValues:

Register DO.W: 00H

RegisterTPAB: Contains TPA Values

The Get/Set TPA Limits Function allows you to obtain or set the boundaries of the

Transient Program Area (TPA). You must load the address of the Transient Program

Area Block (TPAB) in register DLL. The TPAB is a 5-word data structure consisting of

oneword and two longwords. You create theTPAB in the TPA as illustrated in Figure 4-8.

SIZE

1 WORD

1 LONGWORD

1 LONGWORD

Figure 4-8. Transient Program Parameter Block

BYTE OFFSET

00H

02H

06H

FIELD

PARAMETERS |

LOW TPA ADDRESS

HIGH TPA ADDRESS+1

DIGITAL RESEARCH™

4-75

4.6 Exception Functions CP/M-68K Programmer's Guide

The value of the first two bits in the one-word Parameters Field determines whether

this funaion gets or sets the TPA limits and which fields you supply. Figure 4-9 iilustrates

the format of the parameters field.

PARAMETERS

FIELD
15 14 13 12 9 8 7 6 5 4 3

RESERVED BITS (2-15) = 0

1 0

BITS: 1 0

VALUES =1/0 1/0

Figure 4-9. Parameters Field in TPAB

Bit Zero determines whether you get or set the TPA limits. When the value of bit zero

is zero, the BDOS returns the current TPA boundaries in the Low and High Address

fields of the TPAB. When the value of bit zero is one, the BDOS sets new TPA boundaries.

The BDOS uses the values that you specify in the Low and High TPA address fields of

the TPAB to set the new TPA boundaries.

When you set the TPA boundaries, bit one determines whether the boundaries are

temporary or permanent. When the value of bit one is zero, the TPA boundaries that

you set are temporary; when the System warm boots, the previous TPA limits are

restored. When the value of bit one is one, the TPA values that you set are permanent;

they are not changed when the System warm boots.

Bits 2 through 15 contain zeroes. These bits are reserved for future use. Table 4-22

summarizes the values of bits zero and one.

4-76

DIGITAL RESEARCH1"

CP/M-68K Programmer's Guide 4.6 Exception Functions

Table 4-22. Values For Bits 0 and 1 in the TPAB Parameters Field

Bit

0

1

Value

0

1

0

1

Explanation

Return boundaries of current TPA in TPAB Low and High Address

Fields.

Set new TPA boundaries with the values loaded in TPAB Low and

High address fields.

Restore previous TPA values when the System warm boots.

Permanently replace the TPA boundaries with the ones you specify

in the Low and High TPAB Address Fields.

The foUowing examples illustrate and explain values for bits zero and one.

Examples:

1. Get TPA Limits

1 0

0 0

This function returns the boundaries of the current TPA in the Low and High

Address Fields of the TPAB when the value of bit zero equals 0.

2. Temporarily Set TPA Limits

0 1

DIGITAL RESEARCH"

4-77

4.6 Exception Functions CP/M-68K Programmer's Guide

This function temporarily sets the TPA boundaries to the boundaries that you

supply in the Low and High Address Fields of the TPAB when bit zero equais

1 and bit one equais 0. The TPA boundaries are reset when the System

warm boots.

3. Permanently Set TPA Limits

1 1

This function permanently sets the TPA boundaries to the values thatyou supply

in the Low and High Address Fields of the TPAB when the value of bit zero

equais 1 and bit one equais 1. The TPA limits remain set until this function is

called to reset the boundaries or you cold boot System.

End ofSection 4

4-78

E DIGITAL RESEARCH™

Section 5

AS68 Assembler

5.1 Assembler Operation

The CP/M-68K Assembler, AS68, assembles an assembly language source program

for execution on the a 68000 microprocessor. It produces a relocatable object file and,

optionally, a listing. The assembly language accepted by AS68 is identical to that of the

Motorola 68000 assembler described in the Motorola manuals: M68000 Resident

Structured Assembler Reference Manual M68KMASM(D4) and the 16-bit Microproces

sor User's Manual, third edition MC68000UM(AD3). Appendix D contains a summary

of the instruction set. Exceptions and additions are described in Sections 5.6 and 5.7.

5.2 Initializing AS68

If the file AS68SYM.DAT is not on your disk, you must create this file to initialize

AS68 before you can use AS68 to assemble files. To initialize AS68, specify the AS68

command, the -I Option, and the filename AS68INIT as shown below.

ASB8 -I ASG8IIMIT

AS68 creates the Output file AS68SYMB.DAT, which AS68 requires when it assembles

programs. After you create this file, you need not specify this command line again unless

you reconfigure your System to have different TPA boundaries.

5.3 Invoking the Assembler (AS68)

Invoke AS68 by entering a command of the following form:

AS68 [-F d:] [-P] [-S d:] [-U] [-L] [-N] [-1]

[-O object filename]

source filename [>listing filename]

DIGITAL RESEARCH™ •

5-1

5.3 Invoking the Assembler (AS68) CP/M-68K Programmer's Guide

Table 5-1. Assembler Options

Option Meaning

-Fd:

The -F Option specifies the drive on which temporary files are created.

The variable d: is the drive designation, which must be followed by a

colon. If this Option is not specified, the temporary files that AS68

creates are created on the current drive.

-I

The -I Option initializes the assembler. See Section 5.2 for details.

-P

If specified, AS68 produces and prints a listing on the Standard Output

device which, by default, is the console. You can redirect the listing,

induding error messages, to a file by using the >listing filename

parameter. Note that error messages are produced whether or not the

-P Option is specified. No listing is produced, however, unless you

specify the -P Option.

-Sd:

The -S Option indicates the drive on which the assembler initialization

file, AS68SYMB.DAT, resides. This file is created when you initialize

AS68. See Section 5.2. AS68 reads the file AS68SYMB.DAT before it

assembles a source file. The variable, d:, is the drive designation; it

must be followed by a colon. If you do not specify this Option, AS68

assumes the initialization file is on the default drive.

-U

Causes all undefined Symbols in the assembly to be treated as global

references.

-L

Ensures all address constants are generated as longwords. Use the

-L option for programs that require more than 64K for execution or

if the TPA is not contained in the first 64K bytes of memory. If -L is

not specified, the program is assembled to ran in the first 64K bytes

of memory. If an address in the assembly does not fit within one word

an error occurs. Appendix £ describes all AS68 errors.

5-2

E DIGITAL RESEARCH1"

CP/M-68K Programmer's Guide 5.3 Invoking the Assembler

Table 5-1. (continued)

Option Meaning

\ -N

Disables optimization o£ branches on forward

references. Normally, AS68 uses the 2-byte form

of the conditional branch and the 4-byte BSR

instruction wherever possible to speed program

execution and reduce instruction size instead of

the 6-byte JSR instruction.

-T

Enables AS68 to accept the 68010 microprocessor

opcodes. When yöu use -T, the default location of

the symbol table is User 0 on the active (default)

drive.

source filename

The source file specification of the file you want

to assemble. This is the only required parameter.

>listing filename

The -P option sends a program listing to the

Standard Output (the console screen by default).

Using the greater than symbol, >, you can direct

the listing to a disk file. The listing includes

assembler error messages. Note if you do not

specify -P with a listing filename, only the error

messages are redirected to the listing file.

5-3

5.4 Assembly Language Directives CP/M-68K Programmer's Guide

5.4 Assenbly Language Directives

The following table lists alphabeticaliy the AS68 directives with

a description of each one.

Table 5-2. Assenbly Language Directives

Directive Meaning

comm label, expression

The comm (common) directive specifies a label and

the size of a common area that programs assembled

separately can share. The L068 linker links all

common areas with the same label to the same

address. The largest common area of a group with

the same label determines the final size of the

program common area.

data

The data directive instructs A568 to change the

assembler base Segment to the data segment.

bss

The bss (block storage segment) directive

instructs AS68 to change the assembler base

segment to the block storage segment. You cannot

assemble instructions and data in the bss.

However, you can define Symbols and reserve

storage in the bss with the ds directive.

de operand[,operand,...3

The de (define constant) directive defines one or

more constants in memory. The operands can be

symbols or expressions assigned numeric values by

AS68, or explicit numeric constants in decimal or

hexadecimal, or strings of ASCII characters. You

must separate operands with commas. You must

enclose string constants with Single quotation

marks. Each ASCII character is assigned a füll

byte of memory. The eighth bit is always 0.

You can speeify the length of each constant with a

Single letter parameter {byte = b, word = w,

longword = 1). You must separate the letter from

the de with a period as shown in the following

explanations.

5-4

CP/M-68K Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

dc.b The constants are byte constants. If you specify an odd number

of bytes, AS68 fills the odd byte on the right with zeroes unless

the next Statement is another dc.b directive. When the next

Statement is a dc.b directive, the dcb uses the odd byte. Byte

constants are not relocatable.

dc.w The constants are word constants. If you specify an odd

number of bytes, AS68 fills the last word on the right with

zeroes to force an even byte count. The only way to specify

an odd number of bytes is with an ASCII constant. Word

constants can be relocated.

dc.l The constants are longword constants. If less than a multiple

of four bytes is entered, AS68 fills the last longword on the

right with zeroes to force a multiple of four bytes. Longword

constants can be relocated.

ds Operand

The define storage directive (ds) reserves memory locations. The

contents of the memory that it reserves is not initialized. The Operand

specifies the number of bytes, words, or longwords that this directive

reserves. The notation for these size specifications is shown below.

ds.b reserves memory locations in bytes

ds.w reserves memory locations in words

ds.l reserves memory locations in longwords

end

The end directive informs AS68 that no more source code follows

this directive. Code, comments, or multiple carriage returns cannot

follow this directive.

ende

The ende directive denotes the end of the code that is conditionaliy

assembled. It is used with other directives that conditionaliy assemble

code.

SS DIGITAL RESEARCH™

5-5

5.4 Assembly Language Directives CP/M-68K Programmer's Guide

Table 5-2. (continued)

Directive Meaning

equ expression

The equate directive (equ) assigns the value of the expression in the

Operand field to the symbol in the label field that precedes the directive.

The syntax for the equate directive is

label EQU expression

The label and Operand fields are required. The label müst be unique;

it cannot be defined anywhere eise in the program. The expression

cannot include an undefined symbol or one that is defined following

the expression. Forward references to Symbols are not allowed for this

directive.

even

The even directive increments the location counter to force an even

boundary. For example, if specified when the location counter is odd,

the location counter is incremented by one so that the next instruction

or data field begins on an even boundary in memory.

globl label[,label...]

xdeflabel[,label...]

xreflabel[,label...]

These directives make the label (s) external. If the labeis are defined in

the current assembly, this Statement makes them available to other

routines dunng a load by LO68. If the labeis are not defined in the

current assembly, they become undefined external references, which

LO68 links to external values with the same label in other routines.

If you specify the -U Option, the assembler makes all undefined labeis

external.

5-6
m DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 5.4 Assembly Language Directives

Table 5-2. (continued)

Directive Meaning

ifeq expression

ifne expression

ifle expression

iflt expression

ifge expression

ifgt expression

All of the directives listed above are conditional directives in which

the expression is tested against zero for the condition specified by the

directive. If the expression is true, the code following is assembled;

otherwise, the code is ignored until an end conditional directive (ende)

is found. The directives and the conditions they test are listed below.

\

ifc 'stringl',

ifnc 'stringl

ifeq

ifne

ifle

iflt

ifge

ifgt

'stringT

', *string2'

equal to zero

not equal to zero

less than or equal to zero

less than zero

greater or equal to zero

greater than zero

The conditional string directive compares two strings. The 'c' condi

tion is true if the strings are exactly the same. The 'nc* condition is

true if they do not match.

SB DIGITAL RESEARCH"

5-7

5.4 Assembly Language Directives CP/M-68K Programmer's Guide

Table 5-2. (continued)

Directive Meaning

offset expression

The offset directive creates a dummy storage section by defining a

table of offsets with the define storage directive (ds). The storage

definitions are not passed to the linker. The offset table begins at the

address specified in the expression. Symbols defined in the offset table

are internally maintained. No instructions or code-generating direc

tives, except the equate (equ) and register mask (reg) directives, can

be used in the table. The offset directive is terminated by one of the

following directives:

bss

data

end

section

text

org expression

The absolute origin directive (org) sets the location counter to the

value of the expression. Subsequent Statements are assigned absolute

memory locations with the new value of the location counter. The

expression cannot contain any forward, undefined, or external

references.

page

The page directive causes a page break which forces text to print on

the top of the next page. It does not require an Operand or a label and

it does not generate machine code.

The page directive allows you to set the page length for a listing of

code. If you use this directive and print the source code by specifying

the -P Option in the AS6S command line, pages break at predefined

rather than random places. The page directive does not appear on the

printed program listing.

5-8

E DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 5.4 Assembly Language Directivcs

Table 5-2. (continued)

Directive Meaning

reg reglist

The register mask directive builds a register mask that can be used by

movem instruction. One or more registers can be listed in ascending

order in the format:

Replace the R in the above format with a register reference. Any of

the following mnemonics are valid:

A0-A7

D0-D7

R0-R15

The following example illustrates a sample register list.

A2-Aa/A7/Dl/D3-D5

You can also use commas to separate registers:

AI »A2#D5»D7

section #

The section directive defines a base segment. The sections can be

numbered from 0 to 15 inclusive. Section 14 always maps to data.

Section 15 is bss. All other section numbers denote text sections.

text

The text directive instnicts AS68 to change the assembler base segment

to the text segment. Each assembly of a program begins with the first

word in the text segment.

B DIGITAL RESEARCH™

5-9

5.5 Sample Commands Invoking AS68 CP/M-68K Progranuner's Guide

5.5 Sample Commands Invoking AS68

b>ASB8 -U -L TEST.S

This command assembles the source file TEST.S and produces the object Hie TEST.O.

Error messages appear on the screen. Any undefined symbols are treated as global.

(\>AS68 -P SMPL.S >SMPL,L

This command assembles the source Hie SMPL.S and produces the object Hie SMPL.O.

The program must run in the Hrst 64K of memory; that is, no address can be larger than

16 bits. Error messages and the listing are directed to the Hie SMPL.L.

5.6 Assembly Language Differences

The syntax differences between the AS68 assembly language and Motorola's assembly

language are described in the following list.

1. AU assembler directives are optionally preceded by a period (.). For example,

♦ e r u or e q u

♦ d s or d s

2. AS68 does not support, but accepts and ignores the following Motorola

directives:

comline

masKZ

idnt

OPt

3. The Motorola .set directive is implemented as the equate directive (equ).

4. AS68 accepts upper- and lower-case characters. You can specify instructions

and directives in either case. However, labeis and variables are case sensitive.

For example, the label START and Start are not equivalent.

5. For AS68, all labeis must terminate with a colon (:). For example,

A:

F00:

However, if a label begins in column one, it need not terminate with a colon (:).

5-10
28 DIGITAL RESEARCH~

CP/M-68K Programmer's Guide 5.6 Asscmbly Languagc Differences

6. For AS68, ASCII string constants can be enclosed in either Single or double

quotes. For example,

'ABCD'

"acl4"

7. For AS68, registers can be referenced with the following mnemonics:

rO-rl5

R0-R15

<J0-d7

D0-D7

aO-a7

A0-A7

Upper- and lower-case references are equivalent. Registers R0-R7 are the same

as D0-D7 and R8-R15 are the same as A0-A7.

8. For AS68, comment lines cannot begin with an asterisk that is immediately

followed by an equals sign (* =), since the location counter can be manipulated

with a Statement of the form:

♦ = exp r

9. Use caution when manipulating the location counter forward. An expression

can move the counter forward only. The unused space is filied with zeros in

the text or data Segments.

10. For AS68, comment lines can begin with an asterisk followed by an equals

sign (* =) but only if one or more Spaces exist between the asterisk and the

equals sign:

♦ = This command loads Rl with zeros.

♦ = Branch to subroutine XYZ

11. For AS68, the syntax for short form branches is bxx.b rather than bxx.s

12. The Motorola assembler Supports a programming model in which a program

consists of a maximum of 16 separateiy relocatable sections and an optional

absolute section. AS68 distributed with CP/M-68K does not Support this

model. Instead, AS68 supports a model in which a program contains three

segments, text, data, and bss as described in Sections 2 and 3 of this guide.

IS DIGITAL RESEARCH™

5-11

5.7 Assembly Language Extensions CP/M-68K Programmer's Guide

5.7 Assembly Language Extensions

The following enhancements have been added to AS68 to aid the assembly language

programmer by making the assembly language more efficient:

1. When the instructions add, sub, cmp are used with an address register in the

source or destination, they generate adda, suba, and cmpa. When the clr

instruction is used with an address register (Ax), it generates sub Ax, Ax.

2. add, and, cmp, eor, or, sub are allowed with immediate first operands and

actually generate addi, andi, cmpi, eori, ori, subi, instructions if the second

Operand is not register direct.

3. All branch instructions generate short relative branches where possible, indud-

ing forward references.

4. Any shift instruction with no shift count specified assumes a shift count of one.

For example, a s 1 r 1 is equivalent to a s 1 * 1 > r 1 ♦

5. A jsr instruction is changed to a bsr instruction if the resulting bsr is shorter

than the jsr instruction.

6. The .text directive causes the assembler to begin assembling instructions in the

text segment.

7. The .data directive causes the assembler to begin assembling initialized data

in the data segment.

8. The .bss directive instructs the assembler to begin defining storage in the bss.

No instructions or constants can be place in the bss because it is for uninitialized

data only. However, the .ds directives can be used to define storage locations,

and the location counter (*) can be incremented.

9. The .globl directive in the form:

.globl label[,label]...

makes the labeis external. If they are otherwise defined (by assignment or

appearance as a label) they act within the assembly exactly as if the .globl

directive was not given. However, when linking this program with other

programs, these Symbols are available to other programs. Conversely, if the

given symbols are not defined within the current assembly, the linker can

combine the Output of this assembly with that of others which define the

symbols.

5-12
D DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 5.7 Assembly Language Extensions

10. The common directive (comm) defines a common region, which can be accessed

by programs that are assembled separately. The syntax for the common

directive is

.comm label, expression

The expression specifies the number of bytes that is allocated in the common

region. If severa! programs specify the same label for a common region, the

size of the region is determined by the value of the largest expression.

The common directive assumes the label is an undefined external symbol in

the current assembly. However, the linker, LO68, is specral-cased, so all

external Symbols, which are not otherwise defined, and which have a nonzero

value, are defined to be in the bss, and enough space is left after the symbol to

hold expression bytes. All Symbols which become defined in this way are

located before all the explicitly defined bss locations.

11. The .even directive causes the location counter (*), if positioned at an odd

address, to be advanced by one byte so the next Statement is assembled at an

even address.

12. The instructions, move, add, and sub, specified with an immediate first Operand

and a data (D) register as the destination, generate Quick instructions, where

possible.

5.8 Error Messages

Appendix E lists the error messages generated by AS68.

End ofSection S

® DIGITAL RESEARO-T

5-13

Section 6

LO68 Linker

6.1 Linker Operation

LO68 is the CP/M-68K Linker that combines several AS68 assembled {object) pro

grams into one executable command file. All external references are resolved. The linker

must be used to create executable programs, even when a single object program contains

no unresolved references. The argument routines are concatenated in the order specified.

The entry point of the Output is the first instruction of the first routine.

6.2 Invoking the Linker (LO68)

Invoke LO68 by entering a command of the following form:

LO68 [-F d:] [-R] [-S] [-1] [-Uname]

[-O filename] [-X] [-Zaddress]

[-Daddress] [-Baddress] object filename [object filename]

[>message filename]

Table 6-1. Linker Command Options

Option Meaning

-Fd:

The -F option specifies the drive on which temporary files are created.

The variable d: is the drive designation.

-R

The -R option preserves the relocation bits so the resulting executable

program is relocatable.

-S

If specified, the Output is stripped; the symbol table and relocation

bits are removed to save memory space.

0 DIGITAL RESEARCH1

6-1

6.2 Invoking the Linker (LO68) CP/M-68K Programmer's Guide

Table 6-1. (continued)

Option Meaning

-1

If -I is specified, no 16-bit address overflow messages are generated.

When you assemble a program without the AS68 -L Option, the linker

may generate address overflow messages if the program contains

addresses longer than 16 bits.

-Uname

Forces linking of a library module which resolves the name parameter,

even if the name is not referred to by any other module being linked.

Normally library modules are only linked when they are needed to

resolve references in other modules. You can use this Option to create

a program from a library if the module resolving the name parameter

calls other modules in the library.

-O filename

If specified, the object file produced by LO68 has the filename that

you spedfy following the -O Option. The -O Option and filename are

separated by one or more Spaces. If you do not spedfy a filename, the

object file has the name C.OUT.

-X

If specified, the symbol table indudes all local symbols except those

that begin with the letter L. If not specified, LO68 puts only global

symbols in the symbol table. This option is provided so that you can

discard Compiler internally-generated labeis that begin with the letter

L while retaining symbols local to routines.

-Taddress

-Zaddress

The -T and -Z options are equivalent. If specified, the hexadedmal

address given is defined by LO68 as the beginning address for the text

segment. This address defaults to zero, or it can be specified as any

even hexadedmal number between 0 and FFFFFFFFH. This Option is

espedally useful for stand-alone programs, or for putting programs

in ROM. Hexadedmal characters can be in upper-case orlower-case.

6-2

1 DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 6.2 Invoking the Linker (LO68)

Table 6-1. (continued)

Option Meaning

-Daddress

If specified, the hexadecimal address given is defined by LO68 as the

beginning address for the data segment. This address defaults to the

next byte after the end of the text segment, or it can be specified as

any even hexadecimal number between 0 and FFFFFFFF. This Option

is especially useful for stand-alone programs or for putting programs

in ROM. Hexadecimal address characters can be in upper-case or

lower-case.

-Baddress

If specified, the hexadecimal address given is defined by LO68 as the

beginning address for the bss. This address defaults to the next byte

after the end of the data segment, or it can be specified as any even

hexadecimal number between 0 and FFFFFFFF.

object filename [object filename]

The name of one or more object files produced by the assembler AS68.

These are the object files that LO68 links.

>message filename

If specified, error messages produced by LO68 are redirected to the

file that you specify immediately after the greater than (>) sign. If you

do not specify a filename, error messages are written to the Standard

default Output device, which typically is your console terminal.

V DIGITAL RESEARCH'

6-3

6.3 Sample Commands Invoking LO68 CP/M-68K Programmer's Guide

6.3 Sample Commands Invoking LO68

<\>L06B -S -0 TEST,6BK TEST.O

This command links assembled file TEST.O into file TEST.68K and Strips out the

symbol table and relocation bits.

(\>LOBB -T400Q -D8000 -BCOOO A.D B.O C.O

This command links assembled files A.O, B.O, and C.O to the default Output file

C.OUT. The text segment Starts at location 4000H; the data segment Starts at location

8000H; and the bss Starts at location C000H.

&>L068 -I -0 TEST.6BK TEST.O TESTl.O >ERROR

This command links assembled files TEST.O and TESTl.O to file TEST.68K. Any

16-bit address overflow errors are ignored; error messages are directed to the file

ERROR.

6.4 LO68 Error Messages

Appendix E lists the error messages that LO68 displays.

End ofSection 6

DIGITAL RESEARCH*"

6-4

Section 7

Programming Utilities

CP/M-68K supports five programming Utilities: Archive (AR68), DUMP, Relocation

(RELOC), SIZE68, and SENDC68. AR68 allows you to create and modify libraries.

DUMP displays the contents of files in hexadecimal and ASCII notation. RELOC creates

an absolute command file from a relocatable command file. SIZE68 displays the total

size of a memory image command Hie and the size of each of its program Segments.

SENDC68 creates a file of Motorola S-records from a command file. S-records are(

described in the CP/M-68K Operating System System Guide. This section describes each

of these Utilities in a separate subsection.

7.1 Archive Utility

The Archive Utility, AR68, creates a library or replaces, adds, deletes, lists, or extracts

object modules in an existing library. AR68 can be used on the C Run-Time Library

distributed with CP/M-68K and documented in the C Language Programming Guide

for CP/M-68K for the 68000 microprocessor.

7.1.1 AR68 Syntax

To invoke AR68, specify the components of the following command line. Optional

components are enclosed in Square brackets ([]).

AR68DRTWX[AV][FD:] [OPMOD] ARCHIVEOBMOD1 [OBMOD2...][>filespec]

You can specify multiple object modules in a command line provided the command line

does not exceed 127 bytes. The delimiter character between components consists of one

or more Spaces.

13 DIGITAL RESEARCH™ ——

7-1

7.1 Archive Utility CP/M-68K Programmer's Guide

Table 7-1. AR68 Command Line Components

Component Meaning

AR68

invokes the Archive Utility. However, if you specify only the AR68

command, AR68 returns the foliowing command line syntax and

System prompt shown below.

usafe: AR6B DRTWXtAV][FD:][OPMOD] ARCHIVE OBMOD1 COBKOOZ...][>f i lespec]

A>

DRTWX

indicates you must specify one of these letters as an AR68 command.

Each of these one-letter commands and their options are described in

Section 7.1.3.

AV

indicates you can specify one or both of these one-letter options. These

options are described with the commands in Section 7.1.3.

OPMOD

is an object module within the library that you specify. The OPMOD

parameter indicates the position in which additional object modules

reside when you incorporate modules in the library and specify the

A Option.

FD:

specifies the drive on which the temporary file created by AR68

resides. The variable D is the drive select code; it must be followed by

a colon (:). AR68 creates a temporary file called AR68.TMP that

AR68 uses as a scratchpad area.

ARCHIVE

is the file specification of the library.

OBMOD1 [OBMOD2...]

indicates one or more object modules in a library that AR68 deletes,

adds, replaces, or extracts.

7-2

£ DIGITAL RESEARCTT1

CP/M-68K Programmer's Guide 7.1 Archive Utility

Table 7-1. (continued)

Component Meaning

>filespec

redirects the Output to the file specification that you specify, rather

than sending the Output to the Standard Output device, which is usually

the console device (CONSOLE). You can redirect the Output for any

of the AR68 commands described in Section 7.1.3.

7.1.2 AR68 Operation

AR68 sequentially parses the command line only once. AR68 searches for, inserts,

repiaces, or deletes object modules in the library in the sequence in which you specify

them in the command line. Section 7.1.3 describes each ofthe commandsAR68 supports.

When AR68 processes a command, it creates a temporary file called AR68.TMP.

AR68 creates and uses AR68.TMP when it processes AR68 commands. After the

Operation is complete AR68 erases AR68.TMP. However, depending on when an error

occurs, AR68.TMP is not always erased. If this occurs, erase AR68.TMP with the ERA

command and refer to Appendix E for error messages Output by AR68.

7.1.3 AR68 Commands and Options

This section describes AR68 commands and their options. Examples illustrate the

effect and interaction between each command and the options it supports.

Table 7-2. AR68 Commands and Options

Command Option Meaning

D deletes from the library one or more object modules

specified in the command. You can specify the V

Option for this command.

lists the modules in the library and indicates which

modules are retained and deleted by the D command.

The V option precedes modules retained in the

library with the lower-case letter c and modules

deleted from the library with the lower-case letter d.

DIGITAL RESEARCH™

7-3

7.1 Archive Utility CP/M-68K Programmer's Guide

Table 7-2. (continued)

Command Option Meaning

A>ARG8 DK' MYRAH.ARC ORC, 0

c red ♦ o

c blue.o

d o rc ♦ o

c whi te ♦ o

A>

The D command deletes the module ORC.O from

the library MYRAH.ARC. In addition to listing the

modules in the library, the V Option indicates which

modules are retained and deleted.

creates a library when the one specified in the com

mand line does not exist or replaces or adds object

modules to an existing library. You must specify one

or more object modules.

You can replace more than one object module in the

library by specifying their module names in the com

mand line. However, when the library contains more

than one module with the same name, AR68 replaces

only the first module it finds that matches the one

specified in the command line. AR68 replaces mod

ules already in the library only if you specify their

names prior to the names of new modules to be

added to the library. For example, if you specify the

name of a module that you want replaced after the

name of a module that you are adding to the library,

AR68 adds both modules to the end of the library.

By default, the R command adds new modules to the

end of the library. The R command adds an object

module to a library if:

■ The object module does not already exist in the

library.

■ You specify theA Option in the command line.

■ The name of a module follows the name of a

module that does not already exist in the library.

7-4

■ E DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 7.1 Archive Utility

Table 7-2. (continued)

Command Option Meaning

The A Option indicates where AR68 adds modules

to the library. You specify the relative position by

including the OPMOD parameterwith theA Option.

In addition to the A Option, the R command also

supports the V Option, which lists the modules in the

library and indicates the result of the Operation per-

formed on the library. All options are described

below. Examples illustrate their use.

adds one or more object modules following the mod-

ule specified in the command line:

f\>AR68 RAV SDAV.O MYRAH,ARC I4QRK.D MAIL,0

c much.o

c sdav»o

a work»o

a mai1.o

c less«o

The RAV command adds the object modules

WORK.O and MAIL.O after the module SDAV.O

in the library MYRAH.ARC. The V Option, de

scribed below, lists all the modules in the library.

New modules are preceded by the lower-case letter

a and existing modules are preceded by the lower-

case letter c.

lists the object modules that the R command replaces

or adds.

(\>ARB8 RV JNNK.MAN NAIL.O URENCH.O

c saw.o

c haowo

r nail«o

c screwio

a wrench»o

A>

DIGITAL RESEARCH™

7-5

7.1 Archive Utility CP/M-68K Programmer's Guide

Table 7-2. (continued)

Command Option Meaning

The R command replaces the object module NAIL.O

and adds the module WRENCH.O to the library

JNNK.MAN. The V option lists object modules in

the library and indicates which modules are replaced

or added. Each object module that is replaced is

preceded with the lower-case letter r and each one

that is added is preceded with the lower-case letter a.

requests AR68 print a table of Contents or a list of

specified modules in the library. The T command

prints a table of Contents of all modules in the library

only when you do not specify names of object mod

ules in the command line.

displays the size of each file in the table of contents

as shown in the following example.

A>AR68 7"l> UINE.BAD

rw-rw-rw- 0/0 B81S roseio

rw-rw-rw- 0/0 2348 white.o

rw-rw-rw- 0/0 396 red.o

A>

The T command prints a table of contents in the

library WINE.BAD. In addition to lisüng the mod

ules in the library, the V option indicates the size of

each module. The character string rw-rw-rw- 0/0

that precedes the module size is meaningless for

CP/M-68K. However, if the file is transferred to a

UNIX® system, the character string denotes the file

protection and file owner. The size specified by the

decimal number that precedes the object module

name indicates the number of bytes in die module.

7-6
SB DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 7.1 Archive Utility

Table 7-2. (continued)

Command Option

W

X

V

Meaning

writes a copy of an object module in the library to

the >filespec parameter specified in the command

line. This command allows you to extract a copy of

a module from a library and rename the copy when

you write it to another disk, as shown below. For this

command, the >filespec parameter is not optional.

A>AR6B W GO.ARC NOU.O >B:NEUNAME,0

The W command writes a copy of the object mod

ule NOW.O from the library GO.ARC to the file

NEWNAME.O on drive B.

extracts a copy of one or more object modules from

a library and writes them to the default disk. If no

object modules are specified in the command line,

the X command extracts a copy of each module in

the library.

lists only those modules the X command extracts

from the library. It precedes each extracted module

with the lower-case letter:

A>AR68 XV JNNK,MAN SAU.O HAM.O SCREU,0

x saw.o

x ham«o

x screw«o

The V Option with the X command lists only the

modules SAW.O, HAM.O, and SCREW.O that the

X command extracts from the library JNNK.MAN

and precedes each of these modules with the lower-

case letter x.

D DIGITAL RESEARCH™

7-7

7.1 ARCHIVE Utility CP/M-68K Programmer's Guide

7.1.4 Errors

When AR68 incurs an error during an Operation, the Operation is not completed. The

original library is not modified if the Operation would have modified the library. Thus,

no modules in the library are deleted, replaced, added, or extracted. Refer to Appendix E

for error messages Output by AR68.

When you specify the >filespec parameter in the command line to redirect the Output

and one or more errors occur, the error messages are sent to the Output file. Thus, you

cannot detect the errors without displaying or printing the file to which the Output was

sent. If the contents of the Output file is an object file (see the W command), you must

use the DUMP Utility described in Section 7.2 to read any error messages.

7.2 DUMP Utility

The DUMP Utility (DUMP) displays the contents of a CP/M file in both hexadecimal

and ASCII notation. You can use DUMP to display any CP/M file regardless of the

format of its contents (binary data, ASCII text, an executable file).

7.2.1 InvokingDUMP

Invoke DUMP by entering a command in the following format.

DUMP [-sxxxx] filenamel [>filename2]

7-8
JE DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 7.2 DUMP Utility

Table 7-3. DUMP Command Line Components

Component Meaning

-sxxxx xxxx is an optional offset (in hexadecimal) into the file. If specified,

DUMP Starts dumping the contents of the file from the byte-offset

xxxx and continues until it displays the contents of the entire file. By

default, DUMP Starts dumping the contents of the file from the

beginning of the file until it dumps the contents of the entire file.

filenamel is the name of the file you want to dump.

>filename2 the greater than sign (>) followed by a filename or logical device

optionally redireas the Output of DUMP. You can specify any valid

CP/M specification, or one of the logical device names CON: (console)

or LST: (list device). If you do not specify this optional parameter,

DUMP sends its Output to the console.

7.2.2 DUMP Output

DUMP sends the Output to the console (or to a file or device, if specified), 8 words

per line, in the following format:

rrrr oo (ffffff): hhhh hhhh hhhh hhhh hhhh hhhh hhhhhhhh *aaaaaaaaaaaaaaaa*

B DIGITAL RESEARCH~

7-9

7.2 DUMP Utility CP/M-68K Programmer's Guide

Table 7-4. DUMP Output Components

Component Meaning

rrrr is the record nümber (CP/M records are 128 bytes) of the current line

of the display.

oo is the offset (in hex bytes) from the beginning of the CP/M record.

ffffff is the offset (in hex bytes) from the beginning of the file.

hhhh is the contents of the file displayed in hexadecimal.

aaaaaaaa is the contents ofthe file displayed as ASCII charaaers. Ifany charaaer

is not representable in ASCII, it is displayed as a period (.).

7.2.3 DUMPExamples

The foUowing example shows the DUMP Utility. The example shows the contents of

a command file that contains both binary and ASCII Information.

Pi>dump dump»68k

0000 00 (000000): 601a 0000 Ib34 0000 01ld 0000 OeSe 0000 • '.,..4 *..#

0000 10 (000010): 0000 0000 0000 0000 0900 ff ff 6034 4320 * MC *

0000 20 (000020): 527S 6e74 696d 6520 436f 7079 7269 6768 «Runtitne Copyridh«

0000 30 (000030): 7420 3139 3832 2062 7920 4469 6769 7461 *t 1982 bv Didita«

0000 40 (000040): 6c20 5265 7365 6172 6368 2056 3031 2c30 »1 Research V01.0*

0000 50 (000050): 3320 206f 0004 2268 0018 2649 <J3eB 001c »3 0. ♦ "h. .MSh. .*

.... (and so on)...

DIGITAL RESEARCH™

7-10

CP/M-68K Programmcr's Guide 7.3 Relocation Utility

7.3 Relocation Utility

The Relocation Utility (RELOC) creates an absolute file from a relocatable command

file. See Section 3 for a description of the CP/M-68K command file format. An absolute

file is a file that is loaded at an absolute address. RELOC creates the absolute file by

relocating the address constants in the file before it Strips off the relocation bits. Thus,

RELOC creates a new file but does not alter the original file.

The advantage of using RELOC is RELOC decreases the size of the file and increases

Performance. You can load the absolute command file into memory approximateiy twice

as fast as its relocatable counterpart and it occupies half the disk storage space.

7.3.1 Invoking RELOC

You invoke RELOC by entering a command in the format:

RELOC [-Baddress] input filename output filename

® DIGITAL RESEARCH™

7-11

7.3 Relocation Utility CP/M-68K Programmer's Guide

Table 7-5. RELOC Command Line Components

Component Meaning

-Baddress The address parameter is the absolute address for the command file.

The address parameter is optional. If you do not specify the address

parameter, RELOC uses the base address at which it runs as the

default address for relocating the input file. See the first example in

Section 7.3.2. The base address of the file is normally the lowest

address in the TPA + 100H.

input filename The input filename is the file specification of the relocatable command

file that RELOC converts to an absolute file.

output filename The Output filename is the file specification of the absolute file RELOC

creates.

7.3.2 RELOC Examples

This section contains two examples of RELOC. The first example illustrates how to

relocate a file with the filetype of REL to the bottom of the TPA. You can use this example

to create an absolute command file that runs in the bottom of the TPA. The second

example illustrates how to specify an alternate address for a command file.

1. In this example, the RELOC.REL file distributed with CP/M-68K is used to

relocate itself. The resulting file, RELOC.68K, uses its base address for the

absolute address of an input file when the address parameter of the input file is

not specified. You can use this example to relocate other Utilities with a filetype

of REL so that they also run in the bottom of the TPA.

<\>RELOC*REL RELOC.REL RELOC.6BK

The RELOC.REL file relocates itself and Outputs the file RELOC.68K. The

command file RELOC.68K is an absolute file that runs at the bottom oftheTPA.

7-12
• 63 DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 7.3 Relocation Utility

2. In this example, RELOC creates an absolute file that must be loaded at a specific

address.

Pi>RELOC -B500 JUNK,REL JUNK* 68K

RELOC converts the relocatable command file, JUNK.REL, to the absolute

command file, JUNK.68K, which must load into memory at location 500H.

7.4 SIZE68 Utility

The SIZE68 Utility (SIZE68) displays the sizes of each program segment within one

or more command files and the total memory needed by each file. CP/M-68K command

files usually have a filetype of .68K or .REL. The size of a command file returned by

SIZE68 and the size of a command file returned by the STAT command are not equal.

The file size returned by SIZE68 includes the size of the text, data, and bss program

segments but does not include the size of the header, symbol table, and relocation bits.

For more details on the CP/M-68K command file format, refer to Section 3. For more

details on the STATcommand, refer to the CP/M-68K OperatingSystem User's Guide.

7.4.1 Invoking SIZE68

You invoke SIZE68 by entering the SIZE68 command line in the following format:

SIZE68 filename [filename2 filename3 ...] [>outfile]

B DIGITAL RESEARCH™ . —

7-13

7.4 SIZE68 Utility CP/M-68K Programmer's Guide

Table 7-6. SIZE68 Command Line Components

Component Meaning

filename the file specification of a file whose size you want to determine.

filenamel one or more additional file specifications of files whose size you want

filename2 to determine. SIZE68 can process multiple files, provided the com

mand line does not exceed 128 bytes.

>outfile specifies the file specification to which SIZE68 sends its Output. If you

do not specify an Output file specification, SIZE68 sends the Output

to the console. For the Output file specification, you can specify a valid

CP/M filename, or one of the logical device names CON: (console),

or LST: (list device).

7.4.2 SIZE68 Output

SIZE68 produces one Output line for each input file you specify. The Output line should

be in the following format:

filename: csize + dsize + bsize = totsize (hexsize) Stack size = ssize

m DIGITAL RESEARCH™

7-14

CP/M-68K Programmer's Guide 7.4 SIZE68 Utility

Table 7-7. SIZE68 Output Components

Component

csize

dsize

bsize

totsize

hexsize

ssize

Meaning

is the size, in decimal bytes, of the text segment of the file.

is the size, in decimal bytes, of the data segment of the file.

is the size, in decimal bytes, of the block storage segment (bss) of

the file.

is the total size, in decimal bytes, of the memory image occupied by

the file. It is the sum of csize, dsize, and bsize.

is the same value as totsize, expressed in hexadecimal bytes.

is the size of the Stack required by the file.

For an explanation of the program segments of a command file, see Section 3, Command

File Format.

7.4.3 SIZE68 Examples

This section contains examples of the SIZE68 Utility.

1. The SIZE68 command line specified in this example returns the size of one

command file and its program segments.

A>size68 reloc,G8H

reloc.68K:11330+1012+2922=152G4 (3BA0) Stacksize = 0

The program file reloc.68k contains a 11330-byte (decimal) text segment, a

1012-byte (decimal) data segment, and a 2922-byte (decimal) bss. The total size

of the program file is 15264 decimal bytes, which is the same as 3BA0 hexa

decimal bytes. The header in the Reloc.68k file does not specify a minimum

Stack size. However, when CP/M-68K loads a command file, CP/M-68K always

reserves at least 256 bytes for the user Stack. CP/M-68K also creates a 256-byte

base page. Therefore, to run reloc.68k, the minimum size of the TPA cannot be

less than 15776 decimal bytes (15264 bytes for the program, 256 bytes for the

Stack, and 256 bytes for the base page).

as DIGITAL RESEARCH™

7-1J

7.4 SIZE68 Utility CP/M-68K Programmer's Guide

2. The SIZE68 command line specified in this example returns the size of several

program files and their program segments.

f\>sizeB8 si ze ,68k > dump,G8k

sizeG8.68k:7010+38B+3706=11104 (2BB0) Stack size = 0

dump,6Bk:6964+286+367B=1092B (2AB0) Stack size = 0

When you specify multiple file specifications in a command line, use a comma

to delimit each file specification.

3. If you specify a file that is not a common file, SIZE68 returns an error message

as shown below.

(\>size68 clink, sub

Not c.out format: clinK.sub

SIZE68 printed an error message because clink.sub is an ASCII file and not a

command file. Files input to SIZE68 must be command files. Refer to Section

3 for the format of CP/M-68K command files.

7.5 SENDC68 Utility

The SENDC68 Utility (SENDC68) creates a file with Motorola S-record format from

an absolute command file. S-records are a means of representing an absolute program

in ASCII character form. For a detailed description of the S-record format, refer to the

CP/M-68K Operating System System Guide.

7.5.1 Invoking SENDC68

You invoke SENDC68 by entering a command in the following format:

SENDC68 [-] input file [output file]

SB DIGITAL RESEARCH™

7-16

CP/M-68K Programmer's Guide 7.5 SENDC68 Utility

Table 7-8. SBHDC68 Coanand Line Coaponents

Component Meaning

A hyphen is optional. If you specify a hyphen,

SENDC68 does not create any S-records for the bss

segment. The result is a smaller S-record file.

If you do not specify a hyphen, SENOC68 fills the

bss segment with serös.

input file The input file is the file that SENDC68 converts to

the S-record format. The command file must be an

absolute file in the format produced by L068 and

RELOC.

Output file The file that SENDC68 sends the new S-record file

to. If you do not specify an Output file, SENDC68

sends the S-records to the console screen.

7.5.2 SEHDC68 Kxaaple

The following command line example illustrates how to convert an

absolute command file into a file in the Motorola S-record format.

In this example, SENDC68 creates an S-record file named PROG.SR from

an absolute command file named PROG.68K.

A>SBNDC68 - PROG.68K PROG.SR

Note that the hyphen directs SENDC68 not to create S-records for the

bss segment.

7.6 PIHD Utility

The FIND.REL file on your CP/M-68K product disks is the FIND
Utility program in relocatable format. Use the FIND Utility to

locate and display all occurrences of a specified string within one

or more files. FIND uses the following general command line format.

A>FIHfD string file.l file.2 file.3

You can specify ambiguous file references in the FIND command

line. For example, the following command line directs FIND to

search for the string "factor" in all files that have a .H or ,C
filetype on drive B.

A>FIHD factor *.H *.C

End of Section 7

7-17

Section 8

DDT-68K

8.1 DDT-68K Operation

DDT-68K™ allows you to test and debug programs interactively in a CP/M-68K

environment. You should be familiär with the MC68000 Microprocessor, the assembler

(AS68) and the CP/M-68K operating System.

8.1.1 Invoking DDT-68K

Invoke DDT-68K by entering one of the following commands:

DDT

DDT f i lename

The first command loads and executes DDT-68K. After displaying its sign-on message

and the hyphen (-) prompt character, DDT-68K is ready to accept commands. The

second command invokes DDT-68K and loads the file specified by filename. If the filetype

is not specified, it defaults to the 68K filetype. The second form of the command is

equivalent to the sequence:

(\>DDT

DDT-B8K

Copyright 1982» Digital Research

-Ef i1ename

At this point, the program that was loaded is ready for execution.

8.1.2 DDT-68K Command Conventions

When DDT-68K is ready to accept a command, it prompts you with a hyphen (-). In

response, you can type a command line or a CONTROL-C CQ to end the debugging

session (see Section 8.1.4). A command line can have as many as 64 characters, and

must be terminated with a RETURN. While entering the command, use Standard CP/M

line-editing functions to correct typing errors. See Table 4-15. DDT-68K does not

process the command line until you enter a RETURN.

W DIGITAL RESEARCH"

8-1

8.1 DDT-68K Operation CP/M-68K Programmer's Guide

The first nonblank character of each command line determines the command action.

Table 8-1 summarizes DDT-68K commands. They are defined individually in Secrion 8.2.

Table 8-1. DDT-68K Command Summary

Command

D

£

F

G

H

I

L

M

R

S

T

U

V

W

X

Action

display memory in hexadecimal and ASCII

load program for execution

fUI memory block with a constant

begin execution with optional breakpoints

hexadecimal arithmetic

set iip file control block and command tail

listmemory using MC68000 mnemonics

move memory block

read disk file into memory

set memory to newvalues

trace program execution

untraceprogram monitoring

showmemory layout ofdisk file read

write contents ofmemory block to disk

examine and modify CPU State

The command character can be followed by one or more arguments, which may be

hexadecimal values, filenames, or other information, depending on the command. Some

commands can operate on byte, word, or longword data. The letter W for word or a L

for longword must be appended to the command character for commands that operate

on multiple data lengths. Details for specific commands are provided with the command

descriptions. Arguments are separated from each other by commas or Spaces.

8.1.3 Spedfying Addresses

Most DDT-68K commands require one or more addresses as operands. All addresses

are entered as hexadecimal numbers of up to eight hexadecimal digits (32 bits).

8.1.4 Terminating DDT-68K

Tenninate DDT-68K by typing a TC in response to the hyphen prompt. This returns

control to the CCP.

8-2
DIGITAL RESEARCH"

CP/M-68K Programmer's Guide 8.1 DDT-68K Operation

8.1.5 DDT-68K Operation with Interrupts

DDT-68K operates with internipts enabled or disabled, and preserves the Interrupt

State of the program being executed under DDT-68K. When DDT-68K has control of

the CPU, either when it is initially invoked, or when it regains control from the program

being tested, the condition of the interrupt mask is the same as it was when DDT-68K

was invoked, except for a few critical regions where interrupts are disabled. While the

program being tested has control of the CPU, the user's CPU State, which can be displayed

with the X command, determines the State of the interrupt mask.

Note that DDT-68K uses the Trace and Illegal Instruction exceptions. Therefore,

programs debugged under test should not use these.

8.2 DDT-68K Commands

This section defines DDT-68K commands and their arguments. DDT-68K commands

give you control of program execution and allow you to display and modify System

memory and the CPU State.

8.2.1 The D (Display) Command

The D command displays the contents of memory as 8-bit, 16-bit, or 32-bit hexa-

decimal values and in ASCII. The forms are:

D

Ds

Ds,f

DW

DWs

DWs,f

DL

DLs

DLs,f

where s is the starting address, and f is the last address that DDT-68K displays.

Memory is displayed on one or more lines. Each line shows the values of up to 16

memory locations. For the first three forms, the display line appears as follows:

aaaaaaaa bb bb ... bb cc ... cc

83 DIGITAL RESEARCH"

8-3

8.2 DDT-68K Commands CP/M-68K Programmer's Guide

where aaaaaaaa is the address of the data being displayed. The bb's representthe contents

of the memory locations in hexadecimal, and the c's represent the contents of memory

in ASCII. Any nongraphic ASCII characters are represented by periods.

In response to the Ds form of the D command, shown above, DDT-68K displays 12

Iines that Start from the current address. Form Ds,f displays the memory block between

locations s and f. Forms DW, DWs, and DWs,f are identical to D, Ds, and Ds,f except

the contents of memory are displayed as 16-bit values, as shown below:

aaaaaaaa wwww wwww ... wwww cccc ... cc

Forms DL, DLs, and DLs,f are identical to D, Ds, and Ds,f except the contents of

memory are displayed as 32-bit or longword values, as shown below:

aaaaaaaa 1111111111111111... 11111111 cccccccc ...

During a display, the D command may be aborted by typing any character at the

console.

8.2.2 The E (Load for Execution) Command

The E command loads a file in memory so that a subsequent G, T or U command can

begin program execution. The syntax for the E command is:

E<filename>

where <filename> is the name of the file to be loaded. If no file type is specified, the

filetype 68K is assumed.

An E command reuses memory used by any previous E command. Thus, only one file

at a time can be loaded for execution.

"When the load is complete, DDT-68K displays the starting and ending addresses of

each segment in the file loaded. Use the V command to display this Information at a

later time.

If the file does not exist or cannot be successfully loaded in the available memory,

DDT-68K displays an error message. See Appendix E for error messages returned by

DDT-68K.

8-4
E DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

8.2.3 The F (Fill) Command

The F command fills an area of memory with a byte, word, or longword constant.

The forms are

Fs,f,b

FWs,f,w

FLs,f,l

where s is the starting address of the block to be filled, and f is the address of the final

byte of the block within the segment specified in s.

In response to the first form, DDT-68K Stores the 8-bit value b in locations s through f.

In the second form, the 16-bit value w is stored in locations s through f in Standard form:

the high 8 bits are first, followed by the low 8 bits. In the third form, the 32-bit value 1

is stored in locations s through f with the most significant byte first.

If s is greater than f, DDT-68K responds with a question mark. Also, if b is greater

than FF hexadecimal (255), w is greater than FFFF hexadecimal (65,535), or 1 is greater

than FFFFFFFF hexadecimal (4,294,967,295), DDT-68K responds with a question

mark. DDT-68K displays an error message if the value stored in memory cannot be read

back successfully. This error indicates a faulty or nonexistent RAM location.

8.2.4 The G (Go) Command

The G command transfers control to the program being tested, and optionally sets

one to ten breakpoints. The forms are

G

G,bl,...blO

Gs

Gs,bl,...blO

where s is the address where program begins executing and bl through blO are addresses

of breakpoints.

In the first two forms, no starting address is specified. DDT-68K Starts executing the

program at the address specified by the program counter (PC). The first form transfers

control to your program without setting any breakpoints. The second form sets break

points before passing control to your program. The next two forms are analogous to

the first two except that the PC is first set to s.

DIGITAL RESEARCH"

8-5

8.2 DDT-68K Commands CP/M-68K Programme^ Guide

Once control has been transferred to the program under test, it executes in real time

until a breakpoint is encountered. At this point, DDT-68K regains control, dears all

breakpoints, and displays the CPU State in the same form as the X command. When a

breakpoint returns control to DDT-68K, the instruction at the breakpoint address has

not yet been executed. To set a breakpoint at the same address, you must specify a T or

U command first.

8.2.5 The H (Hexadecimal Math) Command

TheHcommand computes the sum and difference oftwo 32-bit values. The form is:

Ha,b

where a and b are the values whose sum and difference DDT-68K computes. DDT-68K

displays the sum (ssssssss) and the difference (dddddddd) truncated to 32 bits on the

next line:

ssssssss dddddddd

8.2.6 The I (Input Command Tau) Command

The I command prepares a file control block (FCB) and command tail buffer in the

base page of the last file loaded with the E command. The form is

I<command tail>

where <command tail> is the character string which usually contains one or more

filenames. The first filename is parsed into the default file control block at 005CH. The

optional second filename, if specified, is parsed into the second default file control block

beginning at 0038H. The characters in the <command tail> are also copied to the

default command buffer at 0080H. The length of the <command tail> is stored at

0080H, followed by the character string terminated with a binary zero.

If a file has been loaded with the £ command, DDT-68K copies the file control block

and command buffer from the base page of DDT-68K to the base page of the program

loaded.

B DIGITAL RESEARCH™

8-6

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

8.2.7 The L (List) Command

The L command lists the Contents of memory in assembly language. The forms are

L

Ls

Ls,f

where s is the starting address, and f is the last address in the list.

The first form lists 12 lines of disassembled machine code from the current address.

The second form sets the list address to s and then lists 12 lines of code. The last form

lists disassembled code from s through f. In all three cases, the list address is set to the

next unlisted location in preparation for a subsequent L command. When DDT-68K

regains control from a program being tested (see G, T and U commands), the list address

is set to the address in the program counter (PC).

Long displays can be aborted by typing any key during the list process. Or, enter

CONTROL-S (TS) to halt the display temporarily. A CONTROL-Q (TQ) restarts the

display after TS halts it.

The syntax of the assembly language Statements produced by the L command is

described in the Motorola 16-Bit Microprocessor User's Manual, third edition,

MC68000UM(AD3).

8.2.8 The M (Move) Command

The M command moves a block of data values from one area of memory to another.

The form is

Ms,f,d

where s is the starting address of the block to be moved, f is the address of the final byte

to be moved, and d is the address of the first byte of the area to receive the data. Note

that if d is between s and f, part of the block being moved will be overwritten before it

is moved, because data is transferred starting from location s.

DIGITAL RESEARCH"

8-7

8.2 DDT-68K Commands CP/M-68K Programmer's Guide

8.2.9 The R (Read) Command

The R command reads a file to a contiguous block in memory. The format is

R<filename>

where <filename> is the name and type of the file to be read.

DDT-68K reads the file into memory and displays the starting and ending addresses

of the block of memory occupied by the file. A Value (V) command can redisplay the

Information at a later time. The default display pointer (for subsequent Display (D)

commands) is set to the Start of the block occupied by the file.

8.2.10 The S (Set) Command

The S command can change the contents of bytes, words, or longwords in memory.

The forms are

Ss

SWs

SLs

where s is the address where the change is to occur.

DDT-68K displays the memory address and its current contents on the following line.

In response to the first form, the display is

aaaaaaaa bb

In response to the second form, the display is

aaaaaaaa wwww

In response to the third form, the display is

aaaaaaaa 11111111

where bb, wwww, and 11111111 are the contents of memory in byte, word, and longword

formats, respectively.

8-8
DIGITAL RESEARCH-

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

In response to one of the above displays, you can alter the memory location or leave

it unchanged. If a valid hexadecimal value is entered, the contents of the byte, word, or

longword in memory is replaced with the value entered. If no value is entered, the

contents of memory are unaffected and the contents of the next address are displayed.

In either case, DDT-68K continues to display successive memory addresses and values

until either a period or an invalid value is entered.

DDT-68K displays an error message if the value stored in memory cannot be read

back successfully. This error indicates a faulty or nonexistent RAM location.

8.2.11 The T (Trace) Command

The T command traces program execution for 1 to OFFFFFFFFH program Steps. The

forms are

Tn

where n is the number of instructions to execute before returning control to the console.

After DDT-68K traces each instruction, it displays the current CPU State and the

disassembled instruction in the same form as the X command display.

Control transfers to the program under test at the address indicated in the PC. If n is

not specified, one instruction is executed. Otherwise, DDT-68K executes n instructions

and displays the CPU State after each step. You can abort a long trace before all the

steps have been executed by typing any character at the console.

After a Trace (T) command, the list address used in the L command is set to the address

of the next instruction to be executed.

Note that DDT-68K does not trace through a BDOS interrupt instruction, since

DDT-68K itself makes BDOS calls and the BDOS is not reentrant. Instead, the entire

sequence of instructions from the BDOS interrupt through the return from BDOS is

treated as one traced instruction.

89 DIGITAL RESEARCH"

8-9

8.2 DDT-68K Commands CP/M-68K Programmer's Guide

8.2.12 The U (Untrace) Command

The U command is identical to the Trace (T) command except that the CPU State is

displayed only after the last instruetion is executed, rather than after every step. The

forms are

U

Un

where n is the number of instruetions to execute before control returns to the console.

You can abort the Untrace (U) command before all the Steps have been executed by

typing any key at the console.

8.2.13 The V (Value) Command

The V command displays Information about the last file loaded with the Load For

Execution (£) or Read (R) commands. The form is

If the last file was loaded with the £ command, the V command displays the starting

address and length of each of the Segments contained in the file, the base page pointer,

and the initial Stack pointer. The format of the display is

Text base=00000500 data base=00000B72 bss base = 00003FDA

text lenäth=00000672 data len<*th = 00003468 bss len3th=0000AlB0

base paäe address=00000400 initial stacK Pointer = OOOO66D4

Ifno file has been loaded, DDT-68K responds to theVcommandwith a question mark (?).

8.2.14 The W (Write) Command

The W command writes the Contents of a contiguous block of memory to disk. The

forms are

W<filename>

W<filename>,s,f

The <filename> is the file speeification of the disk file that receives the data. The letters

s and f are the first and last addresses of the block to be written. If f does not specify the

last address, DDT-68K uses the same value that was used for s.

8-10
DIGITAL RESEARCH™

CP/M-68K Programmer's Guide 8.2 DDT-68K Commands

If the first form is used, DDT-68K assumes the values for s and f from the last file read

with a R command. If no file is read by an R command, DDT-68K responds with a

question mark (?). This form is useful for writing out files after patches have been

installed, assuming the overall length of the file is unchanged.

If the file specified in the W command already exists on disk, DDT-68K deletes the

existing file before it writes the new file.

8.2.15 The X (Examine CPU State) Command

The X command displays the entire State of the CPU, induding the program counter

(PC), user Stack pointer (usp), System Stack pointer (ssp), Status register (by field), all

eight data registers, all eight address registers, and the disassembled instruction at the

memory address currently in the PC. The forms are

X

Xr

where r is one of the following registers:

N DO to D7, AO to A7, PC, USP, or SSP

The first form displays the CPU State as follows:

PC = 00016000 USP = 00001000 SSP = 00002000 ST = FFFF=> (etc.)

D 00001000 00000D01 ♦ . ♦ 00000001

A OOOBOAOO 000A0O10 ♦ . , 00000000

lea $16028,AO

The first line includes:

PC Program Counter

USP User Stack Pointer

SSP System Stack Pointer

ST Status Register

N Following the Status Register contents on the first display line, the values of each bit

in the Status Register are displayed, as shown in the following sample:

TR SUP IM=7 EXT NEG ZER OFL CRY

® DIGITAL RESEARCH"

8-11

8.2 DDT-68K Commands CP/M-68K Programmer's Guide

This sample display includes:

TR

SUP

IM = 7

EXT

NEG

ZER

OFL

CRY

Trace Bit

Supervisor Mode Bit

Interrupt Mask = 7

Extend

Negative

Zero

Overflow

Carry

The second form, Xr, allows you to change the value in the registers of the program

being tested. The r denotes the register. DDT-68K responds by displaying the current

contents of the register, leaving the Cursor on that line. If you type a RETURN, the value

is not changed. If you type a new valid value and a RETURN, the register is changed to

the new value. The contents of all registers except the Status Register can be changed.

8.3 Assembly Language Syntax for the L Command

In general, the syntax of the assembly language Statements used in the L command is

Standard Motorola 68000 assembly language. Several minor excepdons are given in the

following list:

■ DDT-68K prints all numeric values in hexadecimal.

■ DDT-68K uses lower-case mnemonics.

■ DDT-68K assumes word operations unless a byte or longword specification is

explicitly stated.

End of Section 8

8-12
m DIGITAL RESEARCH"

Section 9

The Link Editor, Link68

LINK68 is a linkage editor that creates executable programs with

optional overlays. LINK68 combines object modules that assemblers

and Compilers generate with object modules from an appropriate run-

time subroutine library. You can use LINK68 with Digital Research

68000 language translators such as the AS68 assesbler, C language

Compiler, or with any translator that produces object files using

the same format as the 68K .0 file.

The link editor is distributed on the CP/M-68K product disks in

relocatable file format. You can convert the linker file to

absolute format using the CP/M-68K RELOC Utility. A file in
absolute format loads into memory faster and requires less memory

space than the same file in relocatable format. Refer to Section

7.3 for more Information on RELOC.

The following file should be among the files on your CP/M-68K

product disks:

LINK68.REL — the link editor

9.1 Linking Files

LINK68 accepts two types of object file as input. The firat type

has a filetype of .0 and contains a Single object module. AS68 and

the C Compiler generate .0 type object files. The second type,

library files, has a filetype of .L68 and contain an indexed group

of object modules. AR68 is a library Utility program that generates

and modifies .L68 type library files. Refer to Section 7 for

information on AR68. LINK68 can search library files and link any

modules that a compiled program requires into the executable

program. LINK68 produces executable files in the 68K command file

format with a filetype of .68K.

Following the aign-on banner, LINK68 displays the command tail of

the command line you used to invoke the linker as shown in the

following example:

LINK68 Overlay Linker Version X.X

Serial No. XXXX-0000-000000 All rights reserved

Copyright (c) 1983 Digital Research, Inc.

TESTPGM = TEST(ONE)(TWO) runtime-library

9-1

9.1 Linking Files CP/M-68K Programmer's Guide

LINK68 resolves all references to external Symbols and

concatenates the object files in the order specified in the cosimand

line. The entry point in the resulting executable f ile is the f irst

instruction in the first object file.

Note: You must use LINK68 to create an executable file even if your

program consists of a Single object file with no unresolved

references.

If you use the AS68 COMMON directive in an assembly program to

specify a common area shared by separate modules, LINK68 resolves

all common areas of the same name to the same address in the

uninitialized data (bss) segment. If several files specify common

areas of different s-izes but with the same name, LINK68 allocates

enough space to accommodate the largest common area. In overlayed

assembly programs, LINK68 always places common areas in the root

file.

9.2 LIHK68 Coanand Lines

The command line Starts LINK68 and specifies the files to link.

The code that Compilers generate makes references to routines in the

appropriate run-time library. Therefore, you must specify the run-

time library name explicitly in the LINK68 command line. LINK68 is

a general purpose link editor associated with no particular language

processor. LINK68 must be informed at the command line level what

run-time library is required.

LINK68 command lines can use one of the following general

formats. Items enclosed in braces, (), are optional. An ellipsis,

..., indicates that the preceding item can be repeated any number of

times. Remember, you must specify the run-time library explicitly

in the command line.

1. LIHK68

2. LINK68 object-filet,object-file—Jruntime-library
3. LINK68 new-name=object-filel,object-file...Jruntime-library

If you use format 1, LINK68 simply lists the various command

options you can use, and returns control to the operating System.

If you use format 2, LINK68 creates the executable file with the

same filename as the first object filename listed in the command

line and a filetype of .68K- This is the default file naming

Convention. For example, the following command line directs LINK68

to create an executable file named COS.68K from three object files

named COS.O, SIN.O, and TAN.O.

A>LHiK68 COS,SIN,TAN,runtime-library

9-2

CP/M-68K Programmer's Guide 9.2 LINK68 Command Lines

LINK68 first searches for each object file using the filename you

provide in the command line. If LINK68 cannot find the file, it

searches again for the same filenames but with a .0 filetype added

to the end of each name. For example, consider the following

command line:

A>LINK68 DRIVER,runtine-library

LINK68 first searches for the file named DRIVER. If LINK68

cannot find DRIVER« it searches again for the file named DRIVER.0.

If you use format 3, LINK68 creates the executable file with the

filename that you specify to the left of an equal sign. For

example, the following command line directs LINK68 to create an

executable file named MATH.68K from three object files named COS.O,

SIN.O, and TAN.O.

A>LINK68 MATH = COS, SIN, TAN, runtine-library

LINK68 ignores anything that follows a backslash character, \, in

a command line. Therefore, you can use comments in a command line.

This can be useful if you are listing your work on a printer for

future reference.

LINK68 also ignores any file specification that begins with a

period. This enables you to build batch files for use with the

SUBMIT Utility to prevent having to type long command lines

repeatedly. For example, consider a SUBMIT file named LINKER.SUB

that contains the following commands.

LIHK68 $1.68k - OBJ.O.$1.O,$2.O,$3.O,$4.O,$5.0,runtine-Library

The following SUBMIT command substitutes parameter A for $1, B for

$2, and C for $3 in the file LINKER.SUB:

A>SUBMIT LINKER ABC

Executing the above SUBMIT command is equivalent to executing the

following LINK68 command:

A>LINK68 A.68k = OBJ.O, A.O, B.O, C.O, .0, .O, runtine-library

There are no parameters in the SUBMIT command that correspond to

the ?4 and $5 object files in LINKER.SUB. Therefore, LINK.68 reads

these two file specifications as beginning with a period and ignores

them in the link process. LINK68 creates the executable file A.68K

from the files OBJ.O, A.O, B.O, C.O and the runtime library. Refer

to the CP/M-68K Operating System User 's Guide for more information
on the SUBMIT Utility.

9-3

9.3 LINK68 Command Line Options CP/M-68K Programmer's Guide

9.3 LINK68 Coamand Line Options

L1NK68 has a number ol command line options that you can use to

oontrol the link Operation. Options are keywords that send Special

instructions to LINK68. There are two ways to use options:

globally and locally. If you use options globally, they apply to

all the files specified in the link command line. If you use

options locally, they apply only to specific files listed in the

command line. Options specified either globally or locally must be

enclosed within Square brackets in the command line.

To specify options globally, you must place them, enclosed in

Square brackets, before the new-name specification in the command

line. Use the following general format to specify options globally:

LINK68 Cglobal options] new-name = object-files runtime-library

To specify options locally, you must place them, enclosed in

Square brackets, immediately after the object file to which they

apply. Use the following general format to specify options locally:

LINK68 new-name «* object-fileClocal options], object-file

Notice that the local options in the preceding example do not apply

to the second object file.

You can place Spaces between filenames to improve readability in

the command line. You can also specify more than one Option within

the Square brackets by separating them with commas. LINK68 allows

you to abbreviate an Option name to its shortest unambiguous form.

The following table lists all of the LINK68 options and explains

their use. Notice that certain options can only be used locally and

certain options can only be used globally. Two exceptions are the

LOCALS and NOLOCALS options.

Table 9-1.

Option

ABSOLUTE

ALLMODS

Abbr.

AB

AL

Function

Teils LINK68 to generate an absolute

file with no relocation bits. The

default is a relocatable program.

This Option is for global use only.

Teils LINK68 to load all of the

modules from a library, even if

they are not referenced. The

de fault is to include only those

modules that are actually

referenced. This Option is for

local use only.

9-4

CP/M-68K Programmer's Guide 9.3 LINK68 Command Line Options

Table 9-1. (continued)

Option Abbr. Function

BSSBASECnj Bin] Sets the base address for the

uninitialized data segment (bss) in

noncontinuous programs. n is a

hexadecimal number. The default

value is the first word after the

data segment. You cannot use this

Option when linking overlayed

programs. This Option is for

global use only.

CHAINED CH For use primärily with the CB68

BASIC Compiler, this Option creates

a command file that does not use a

true overlay scheine but rather

chains from one file to another.

This Option is for global use only.

COMMAND CO Teils LINK68 that the filename

enclosed in Square brackets

following the COMMAND option

keyword is a disk file that

contains the rest of the command

line. LINK68 ignores any

characters that follow the closing

square bracket for the filename.

Command line disk files enable you

to störe long and complicated

command lines for future or

repeated use. You cannot nest

command line disk files. Use the

following format for this Option:

LCOMMAND [filename]j

The filename is the disk file that

contains the rest of the command

line. This option is for global

use only.

DATABASECn] DLn] Specifies the base address of the

data segment in noncontinuous

programs. n is a hexadecimal

number. The default is the first

word after the text segment. You

cannot use this option when linking

overlayed programs. This option is

for global use only.

9-5

9.3 LINK68 Command Line Options CP/M-68K Programmer's Guide

Option

IGNORfi

INCLUDE

LOCALS

NOLOCALS

SYMBOLS

Table

Abbe.

IG

IN

L

NO

S

9-1. (continued)

Function

Teils L.INK68 to ignore 16-bit

address overfiow. This option is

for gxobai use only.

Teils LINK08 to load an

unceferenced raoduie trom a

library. Use the foliowing format

for the INCLUDE Option:

[INCLUDE [symbol-namejJ

The lsymbol-namej you speeify must

be contained in the module that

you want to load. This Option is

for local use only.

Teils LINK68 to put local Symbols

in the syiabol tabxe. The default

is no local Symbols in the .0

file. LOCALS only applies from

the point in the command line that

it appears. Together, LOCALS and

NOLOCALS work like a switch. This

option is for local or global use.

The NOLOCALS option turns off the

LOCALS option. Use LOCALS and

NOLOCALS in combination to place

iocal Symbols froro specitic files

in the symbol table. LINK68

always ignores local Symbols

starting with L. This option is

for local or global use.

Teils LINK68 to put the symbol

table in the Output file. The

default is no symbol table in the

Output fiie. This option is for

global use only.

9-6

CP/M-68K Programmer's Guide 9.3 LINK68 Command Line Options

Table 9-1. (continued)

Option Abbr. Function

TKMPFILES [d: J T£M[d:J Teils LINK68 to put temporacy files

on a specific drive. d must be a

letter from A to P corresponding

to an accessible drive. The

default is the currently logged-in

drive. This option is for global

use only.

TEXTBASE[dj TEX[d]

UNDEFINED

Specifies the base address for the

text segment. d must be a

hexadecimal number. The default

is 0. With overlayed prograros,

this Option specifies the base of

the root file. This Option is for

global use only.

Teils LINK68 to ignore the presence

of undefined Symbols in the input

files. LINK68 lists the undefined

Symbols, and then continues

processing. The default is to

list all undefined Symbols and

then stop processing. This Option

is for global use only.

The following command line example shows options declared

globally. The example creates an executable program named FOOBAZ

from the object fiie FOOMAIN and the library FOOLIB. The options,

declared globally, teil LINK68 to include the symbol table in FOOBAZ

and place an temporary files on the B drive.

A>LIHK68 [SYM,TEMEB:]] FOOBAZ = FOOHAIN,FOOLIB,runti«e-library

The next command line example shows options declared locally.

The example creates an executable program named SCREEN from the

object fiie SCRNSi and the library IOLIB. The options, deciared

locally, teil LINK68 to put all local Symbols from SCRNS1 into the

symboi table and to include the unreferenced library module INVT

from IOLIB into the executable program.

A>LIHK68 SCREEN = SCRHS1[LOC],IOLIB[IHCCIMVT]],runti»e-library

The next coramand iine exampie telj.s LINK68 to read the rest of

the command xine from a command line disk file named LINKIT.INP.

A>LINK68 ICOMILINKIT.INP]Jf runtime-library

9-7

9.3 LINK68 Command Line Options CP/M-68K Programmer's Guide

LINKIT.INP contains the rest o£ the command line for the previous

example. The following example shows commands that a command line

disk file like LINKIT.INP might contain. This example shows options

declared globally and locally. The example creates an executable

program named FIGURES fron the object files PRODAT and SUBDAT, and

the library file LIBTEX. Global options teil LINK68 to create

FIGURES as an absolute file with the text segment starting at 500H,

the data segment starting at 2A00H, and the uninitialized data

segment starting at 3000H. The local options teil LINK68 to include

all modules from LIBTEX in the executable program, and to include

all local Symbols from both SUBOAT and LIBTEX in the symbol table.

[AB, TEX[5OO3, DATAC2AO0], BSS[3000]] FIGURES = PRODAT,

SUBDATCLOCALSJ, LIBTEX[ALLMODS], runtime-library

9.4 Producing Overlays

An overlay is a portion of a larger program that loads into

memory from disk for execution when needed. Overlays enable you to

create large programs. One part of the program, the root module,

resides in memory all the time. The other parts, the overlays, load

automatically from disk when called by the root module or another

overlay. Thus, the whole program does not have to fit in memory at

the same time. The following terms pertain to the understanding of

overlays:

• root module: The portion of the program that resides in memory

all the time. Root modules have a . 68K filetype. A root

module consists of a main program, the required run-time

routines, and optionally, the run-time routines that the

overlays require.

• overlay area: An area in memory where the overlay manager

loads the overlays. You must specify the location and size of

the overlay area at link-time.

• overlay static variables: Global variables or variables local

to a run-time or assembly-language routine in the overlay.

Recursion reduces the amount of static data. It does not

necessarily eliminate it because run-time code linked with the

overlay might contain static data. When you link the overlay,

the linker determines the amount of space required for static

variables.

9.4.1 General Overlay Schene

LINK-68 supports a simple tree-structured overlay scheine with a

maximum of 255 overlays. You can create overlays to a depth of f ive

levels below the root module. Only one overlay on a given level can

be memory-resident at a time. LINK-68 places all global static data

in the root module, no matter where it is originally defined.

9-8

CP/M-68K Programmer's Guide 9.4 Producing Overlays

An overlay can reference a symbol in any overlay that is one

level above in the tree or in an overlay on any level below. An

overlay cannot reference a symbol in an overlay on the same level or

in an overlay that is more than one level above.

Figure 9-1 shows a typical overlay scheine. In this scheine,

overlays A and B can reference symbols in the root, but overlay A

cannot reference symbols in B because both A and B cannot reside in

memory at the same time. Overlays B and C can reference symbols in

each other and the root, but not in overlay A.

Overlay A

1
floot

Module

Overlay C

1

Overlay B

1

Figure 9-1. Typical LINK68 Overlay Schene

An overlay file has the same format as a 68K command file. The

first word in the header is always 601AH. An overlay file can be

either absolute or relocatable. An overlay file can have any

filetype. However, the default filetype is .068.

9.4.2 Linking Overlays

You determine a specific overlay scheme by the manner in which

you link the programs. That is, overlays do not require any Special

construct or syntax in the source code. However, you must ensure

that the root module contains the overlay manager and loader. Use

the following general command line format to link overlays. Note

the overlay file speci fications are always last in the command line.

LINK68 root,overlay-mgr,(overlay-l[,overlay-2[,overlay-n]])

9-9

9.4 Producing Overlays CP/M-68K Programmer's Guide

To generate an overlay, you must enclose the filenarae of the

overlay object file in parentheses within the LINK68 command line.

The following command line creates an executable program naraed

TEST.68K and one overlay naraed ONE.O68.

A>LIHK68 TEST, runtiae-library, (ONE)

The TEST.68K file that the preceding example generates is the root

program. The ONE.068 file is the overlay. The root program

contains all library routines and COMMON data for the entire

program.

The following command line generates an executable program named

TESTPGM.68K and two overlays named ONE.068 and TWO.O68:

A>UHK68 TBSTPGM = TEST, runtiae-library, (ONE), (TWO)

You can combine several object files into one overlay. The

following command line generates an executable program named

TEST.68K and three overlays named A.O68, C.O68, and F.068:

A>LIHK68 TBST.runtiae-library, (A,B) (C.D,E) (P)

You can specify names for the overlay files in the command line.

The following command line generates the TESTPGM.68K program and two

overlays named FIRST.068 and SECOND.O68:

A>LIMK68 TBSTPGM - TEST, runtime-library, (FIRST=A), (SBCOND-B,C)

You can nest overlays by nesting the enclosing parentheses in the

command line. For example, the following command line creates the

overlay scheme shown in Figure 9-2:

A>LIHK68 TBSTPGM = PART1, OVU4GR. (PAKT2A, (PART2B))

Overlay

PartBI

L
I

Part A

Root Module

Overlay

Part 82

|

Pigure 9-2. Nested Overlay Scheue

9-10

CP/M-68K Programmer's Guide 9.4 Producing Overlays

9.4.3 Overlay File Fornat

An overlay file has the same format as a 68K command file. The

bss, data, and text segments are always contiguous. An overlay file

can be either absolute or relocatable. An overlay file can have any

filetype. However, the default filetype is .066.

If you use the SYMBOLS Option, LINK68 places all Symbols from the

overlay files in the root program.

LINK68 resolves the following Symbols as indicated:

_edata = top of the root's data segment.

_etext = top of the root's text segment.

_end = top of the overlay area for overlayed programs, or

~~ the top of the root's bss segment for

nonoverlayed programs.

cbmain = main entry point for nonoverlayed programs.

main.XXX = main entry point in overlayed programs. XXX

corresponds to an overlay nuraber. For example,

main. 000 is the main entry point in the root

program, main.001 is the main entry point in the

first overlay, and so forth.

9.5 UHK68 Brror Messages

LINK68 returns two types of error messages: diagnostic program

errors and internal logic failures. Both types of error message

display on the console screen in the following form. You can also

redirect diagnostic Output to a disk file as explained in the next

section.

LINK68: <error-message>

Detection of a program diagnostic error prevents your program

from linking. When LINK68 detects a füll disk during linking, erase

the partial file that LINK68 creates on the disk that produced the

error. This ensures that you will not use the partial file at a

later date, assuming that it is a complete file. The LINK68

diagnostic error messages are listed in the following table.

Messages appear in alphabetical order with explanations and

suggested Solutions.

9-11

9.5 LINK6B Error Messages CP/M-68K Programmer's Guide

Table 9—2. LIHK68 Diagnostic Error Messages

Message Meaning

LINK68: CANNOT OPEN <filename> FOR INPUT

The indicated file is invalid or the file

does not exist. Check the filename before

you reenter the command line.

LINK68: CANNOT SET DATA OR BSS BASE WHEN USING OVERLAYS

The BSSBASE and DATABASE options are not

allowed when linking overlays. Correct

the error and reenter the command line.

LINK68: COMMAND LINE TOO LONG

The command line exceeds 132 characters.

Reduce the length of the command line, or

use a command line input file.

LINK68: "<symbol-name>M DOUBLY DEFINED IN <filename>

The symbol <symbol-name> is defined twice.

The variable <filename> indicates which

file contains the second definition.

Rewrite the source code and provide a

unique definition for each symbol.

Reassemble or recompile the file before

relinking.

LINK68: FILE FORMAT ERROR IN <filename>

The indicated file is not an object file,

or the file has been corrupted. Make sure

that the file is an object file.

Reassemble or recompile the file before

relinking.

LINK68: HEAP OVERFLOW — NOT ENOUGH MEMORY

There is not enough memory for LINK68 to

continue processing. Use the NOLOCALS

Option, or rewrite the source code using

fewer symbols. Reassemble or recompile

the file before relinking.

9-a2

CP/M-68K Programmer's Guide 9.5 LINK68 Error Messages

Table 9-2. (continued)

Message Meaning

LINK68: ILLEGAL CHARACTER: '<char>'

The character <char> is not a legal

character in the command line. Correct

the error and reenter the command line.

LINK68: ILLEGAL REFERENCE TO OVERLAY SYMBOL

"<symbol-name>" PROM MODULE <module-name>

The indicated module contains an illegal

reference to the symbol indicated by

<symbol-name>.

LINK68: IMPROPERLY FORMED HEX NUMBER: "<num>"

The hexadecimal number <num> contains an

invalid digit. Correct the error and

reenter the command line.

LINK68: INVALID RELOCATION FLAG IN <filename>

The content of the indicated file is

formatted incorrectly. The file is not an

object file, or it has been corrupted.

Make sure that the file is an object file.

If the file is an object file and this

error occurs, the file has been corrupted.

Reassemble or recompile the file before

relinking.

LINK68: INVALID SYMBOL FLAG IN <filename>

The file is not an object file, or it has

been corrupted. Make sure that the file

is an object file. Reassemble or
recompile the file before relinking.

LINK68: NESTED COMMAND FILES NOT ALLOWED

LJNK68 does not allow you to nest command

files. Correct the error and relink.

9-13

9.5 LINK66 Error Messages CP/M-6ÖK Progcanuner's Guide

Table 9-2. (continued)

Message Meaning

LINK68: NO KELOCATION BITS IN <filename>

The indicated file is not an object file,

or it has been corcupted. Make sure that

the file is an object file. lf the file

is an object fiie and this ecror occurs,

the file has been corrupted. Reassemble

or cecompile the file before relinking.

LINK68: OVERLAYS NESTED T00 DEEPLY

LINK68 allows öniy 5 levels of overlays.

Chained programs can have only one level

of overlay. Examine your program and

simplify the overlay scheme.

LINK68: PARSE £ND BEFORE COMMANÜ STREäM ENO

LINR68 has unexpectediy encountered the

logical end of the command line before the

physical end. Check the coromand line for

proper syntax and options.

LINK68: READ ERROR ON FILE: <fiiename>

The indicated object file is either

formatted incorrectly or has been

corrupted. This error is commonly caused

when the input to LINK6B is a partiaily

assembled or compiled object file. The

assembler, AS68, and some Compilers create

partial object files when they detect a

füll disk during assembly or compilation.

Make sure that the file is a complete

object file. Reassemble or recompile the

file before relinking.

LINK68: RELATIVE ADORESS

<filename>

OVERFLÜW AT <offset> IN

There is an overflow error in Computing

the address of a Symbol in the command

file. This is caused by an error in the

9-14

CP/M-68K Progranuner's Guide 9.5 LINK68 Error Messages

Table 9-2. (continued)

\

Message

LINK68:

LINK68:

LINK68:

LINK68:

LINK68:

Meaning

object file. Check the object file for

correct code. Reassemble or recompile the

file before relinking.

SHORT ADDRESS OVERFLOW AT <offset> IN <filename>

Thece is an overflow error in Computing

the address of a Symbol in the comraand

file. A short address is referencing

something too far away in the code. This

is caused by an error in the object file.

Use the IGNORE option, or reassemble the

file using the AS68 -L option before

relinking.

SYMBOL TABLE OVERFLOW

The object code contains too raany Symbols

and exceeds the size of the symbol table.

Use the NOLOCALS option, or rewrite the

source code using fewer Symbols.

Reassemble or recompile the file before

relinking.

SYNTAX ERROR, EXPECTED: <item>

There is a syntax error in the command

line. LINK68 expected to encounter

<itera>. Correct the error and relink.

TOO MANY OVERLAYS

LINK68 allows a maximum of 255 overlays.

Examine your program and simplify the

overlay scheme.

UNABLE TO CREATE FILE: <filename>

The indicated Output file has an invalid

drive code, or the disk to which LINK68 is

writing is füll. Check the drive code.

If it is correct, the disk is füll. Erase

unnecessary files or insert a new disk,

then reenter the LINK68 command line.

9-15

9.5 LINK68 Error Messages CP/M-68K Programmer's Guide

Table 9—2. (continued)

Message Meaning

LINK68: UNABLE TO OPEN TEMPORARY FILE <filenarae>

The indicated file has an invalid drive

code, specified by the TEMPFILES Option«

or the disk to which LINK68 is writing is

füll. Check the drive code. If it is

correct, the disk is füll. Erase

unnecessary files, or insert a new disk

before you reenter the LINK68 command

line.

LINK68: UNDEFINED SYMBOL(S):

The symbol or symbols that are listed one

for each line on the lines following the

error message are undefined. Provide a

valid definition and reassemble the source

code before you reenter the LINK68 command

line. If the symbols are not referenced

by the program, you can use the UNDEFINED

Option in the command line.

LINK68: UNEXPECTED END OF COMMAND STREAM

LINK68 unexpectedly encountered the

physical end of the command stream before

the logical end. Check the command line

for proper syntax and options.

LINK68: UNRECOGNIZED OR MISPLACED OPTION NAME: "<option>"

<option> is not a valid LINK68 Option, or

it is misplaced in the command line.

Correct the error and relink.

LINK68: WRITE ERROR ON FILE: <filename>

The disk to which LINK68 is writing is

füll. Erase unnecessary files, or insert

a new disk before you reenter the LINK68

command line.

9-16

CP/M-68K Programmer's Guide 9.6 LINK68 Internal Logic Failures

9.6 LIHK68 Internal Logic Failures

The following error messages indicate failures in the internal logic

of LJNK68:

LINK68: INTERNAL ERROR IN <procname>

LINK68: TEXT SIZE ERROR IN <filename>

LINK68: SEEK ERROR ON FILE: <filenarae>

LINK68: UNABLE TO REOPEN FILE <filename>

If you encounter one of these messages, contact your Software

vendor for information and assistance. You should provide the

vendor with the following information.

1. The Version of the operating System you are using.

2. A description of your System hardware configuration.

3. Documented information on how the error occurred. Indicate

which program was running at the time the error occurred.

If possible, provide a disk with a copy of the program that

produced the error.

9.7 Redirecting Diagnostic Output

Normally, LINK68 sends all diagnostic Output, such as error

messages, to the console. However, you can redirect this Output

using the > character in the command line. For example, the

following command line creates an executable program named

MYFILE.68K from the object files MODA and MODB. All diagnostic

Output is sent to a file named LNKMSGS.TXT on the D: drive.

A>LIMK68 MYFILE = MODA, MODB > D:LNKMSGS.TXT

End of Seetion 9

9-17

Appendix A

Summary of BIOS Functions

Table A-1 lists the BIOS functions supported by CP/M-68K. For more details on these

funrtions, refer to the CP/M-68K Operating System System Guide.

Function

Init

Warm Boot

Const

Conin

Conout

List

Auxiliary Output

Auxiliary Input

Home

Seldsk

Settrk

Setsec

Setdma

Read

Write

Listst

Sectran

GetMemory Region

Table Address

Get I/O Byte

Set I/O Byte

Hush Buffers

Set Exception Vector

Table A-1.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

21

22

Summary of BIOS Functions

Description

Called for Cold Boot

Called forWarm Start

Check for Console Character Ready

Read Console Character In

Write Console Character Out

Write Listing Character Out

Write Character to Auxiliary Output Device

Read from Auxiliary Input Device

MovetoTrack 00

SelectDisk Drive

SetTrackNumber

Set SertorNumber

SetDMA Offset Address

Read Seierted Sertor

Write Seierted Sector

Return List Status

SertorTranslate

Address ofMemory Region Table

Get I/O MappingByte

SetI/O MappingByte

Writes Modified Buffers

Sets Exception Vector

End ofAppendix A

D DIGITAL RESEARCH*

A-1

Appendix B

Transient Program Load Examples

This appendix contains two examples, an assembly language program and a

C language program. Both illustrate how a transient program loads anomer program

with the BDOS Program Load Function (59) but without the CCP.

Examples:

1. The foUowing example is an AS68 assembly language program that loads

another program into the TPA.

BDOS Function Definitions

reboot

printst r

open

setdma

PSiwldf

aetlpa

0

= 9

15

26

59

63

> text

OPEN file to be loaded

Start:

*

*

*

linK

dioue

lea

rnoue

moue

trap

CMPl

bei

.1

.1

«w

a6 »$O

B(a6)>aO

$5c(aO> <

al »dl

»open »dO

»2

«255 ,dO

openerr

Compute Addresi

ftmark stacK frame

»Set the address of the base

*9et address of Ist parsed FCB in base paäe

#put that address in reaister dl

*put BDOS function number in retfister dO

*trv to open the file to be loaded

*test dO for BDOS error return code

*if dO = 255 then 9oto openerr

Listing B-l. Transient Program Load Example 1

DIGrTAL RESEARCH™

B-l

B Transient Program Load Example CP/M-68K Programmer's Guide

clear:

moi.'e

tnove

add.

dioue

sub

niove

add.

move

sub

clr.

dbf

1

1

•

b

1

1

1

1

1

$18<aO>

»lc(aO>

d2»d3

»20(aO)

«100t4ä

4Ü,65

43,40

d3 »a3

«1 »d5

(a3) +

.d2

id3

,4Ü

45 iclear

♦ Set starting address of bss from base

«Set lensth of bss

«coinpute first free byte of inemarv

*after t-ss

«Set lensth of free memorv after bss

«leaue some extra room

«saue that lensth in realster d5

«compute hish end of free memorv after bss

*get the starting address of free metnorv

i n t o a3

«adjust Ioop counter

«clear out free Memory

•decrement Ioop counter and Ioop until

♦negative

FILL the LPB

Lou address becomes first free bvte of memorv after bss

HiSh address of area in which to load prosram becomes

the Low address plus length of free wemorv

«l d3rlowadr

.l d4»hiadr

moue.l al»LPB

moue.w »pgwldf»dO

move.l «LPB.dl

trap «2

tst »dO

bne lderr

«Set lau end of area in which to load

«prosram

«set hish end of area in which to load

«prosram

«put address of oper. FCB into LPB

«Set BDOS prosram load function r-umber

«put address of LPB into resister dl

*do the prosram load

«was the load successful?

•if not then print error messase

Set default DMA address

move.l baspas»dl

add »$80»dl

mowe.w »setdwa»dO

trap »2

«dl Points to new prosram's base pasre

«dl Points to default dma in base pase

«Set BDD5 function number

«set the default dma address

Listing B-l. (continued)

B-2

DIGITAL RESEARCH"

CP/M-68K Programmer's Guide B Transient Program Load Example

Nou push needed addresses on stacK

moueail usrstk»a7

moue«l baspas»al

tnoue.1 al i-(sp)

MOMe.l «cmdrtn»-<sp)

moue.1 8(al) >-(sp)

rts

«set up user Stack pointer

«äet address of base paäe

*push base paSe address

*push return address

*push address to Jump to

♦ Jump to neu prodram

Print ERROR raessaäe

openerr:

bra print

lderr: moveil »loaderrrdl

print: mowe.w «printstr»dO

trap »2

cmdrtn: mo'ie.w *reboot>dO

trap »2

♦äet address of error messase

*to be printed

*9et address of error messaäe to

*be printed

*9et BDOS function number

*print the tnessaae

♦9et BDOS function numher

»warmboot and return to the CCP

DATA

• data

• even

Listing B-l. (continued)

DIGITAL RESEARCH"

B-3

B Transient Program Load Exampie CP/M-68K Programmer's Guide

LOAD PARAMETER BLOCK

*

LPB:

lowadr:

*

hiadr:

*

baspad:

usrstk:

flass:

*

*

*

TPAB:

lou:

hiSh:

.ds.l

.ds.l

.ds.l

.ds.l

.ds.l

. de «u

TPA Parameter E

. even

.dc.w

.ds.l

.ds.l

1

1

1

1

0

Hoc

0

1

1

*FCB address of prosram file

«Low boundarv of area in which

*to load prosram

*Hiäh boundar/ of area in which to

*to load proaram

«Base patfe address of loaded program

*Loaded proäram's initial Stack pointer

*Load proSram functiovi control flaäs

loaderr:

openmsä:

.dc.b 13»1O i'Pro9ram Load Error*'

.dc.b 13 ilOt 'Unable to Open File$

• end

Listing B-l. (continued)

m DIGITAL RESEARCH"

B-4

CP/M-68K Programmer's Guide B Transient Program Load Example

2. The following example is a C language transient program that loads another

program in the TPA without the assistance of the CCP. The C language program

calls an AS68 assembly language routine to perform tasks not permitted by the

C language.

/*

'C Lanäua3e Prodram

Proäram into

to

the

Load

TPA

Anothe r

-♦/

/* DEFINES

«define

«def ine

«define

»define

»define

»define

»def ine

»def ine

»def ine

»def ine

»def ine

«define

»def ine

« d e f i n e

»def ine

»define

#/

BSS_OFFSET

FCB_OFFSET

BSS—LENGTH

FREE_MEMORY

DMA_OFFSET

ROOM

NULL

CR

LF

REBOOT

CON__OUT

PRINTSTR

OPEN

SETDMA

PGMLDF

GETTPA

(lon<r)ÜxlB

(lon*)0x5C

Uon<r)OxlC

(Ion*)0x20

(Ion 3)0x80

(lons)OxlOO

'0'

< Ions)13

«Ion 9)10

0

2

£)

15

26

59

G3

Listing B-2. Transient Program Load Example 2

IS DIGITAL RESEARCH™

B-5

B Transient Program Load Example CP/M-68K Programmer's Guide

/* Error Messages #/

char OPenmsSCZO] = "Unable to Open File$"i

char loadtiissC 13] = "Prosram Load Error$"i

/♦ Load Parameter BlocK */

extern Ion9 LPB»lowadr»hiadr>baspa3»usrstK5

extern int flafls»

/* TPA Parameter BlocK */

extern int TPAB5

extern Ions Iow»hi3hi

Listing B-2. (continued)

O DIGITAL RESEARCH~

B-6

CP/M-68K Programmer's Guide B Transient Program Load Example

■

openfiIg I baseadd r >

resister char *baseaddr!

<

resister lontf *tlt*t2>

reffi ste r Ion s counil

resister char »ptrl i*ptrZ

ptrl z baseaddr + FCB_DFF5£T

if (6dos<DPEN iPtrll <= 3)

<

tl = baseaddr +

BB5_OFFSETi

t2 ~ baseaddr ♦

bss_length;

1Dwad r - #t 1 + *t2 i

ptr2 - louadr

12 z baseaddr +

FREE.MEMDRYi

h i ad r - *tZ + louad r

count = *x2 - RDDM

whi1e(cDunt--)

*ptr2++ - NULL

LPB - Ptfli

/♦♦#*♦♦*******♦•*####*####*#**#**/

/* base paäe address */

I* ♦/

/* pointers to Ion3 usrd ualues #/

/*lonswordijalue ♦/

/* PDiniers to characier ualu.es */

/* */

/* #/

!* äei address of FCB •/

/* trv to open the file •/

/* */

/* set Pointer to STARTING addr »/

t* af the BSS seSment #/

/* set Pointer to LENGTH af */

/* the BSS se Swent */

/* cQMPute the first free byte *■/

/• address af wemor/ after the */

/♦ 03S segment #/

/* *ptr2 nou Points to first */

/• free byte in wemorv #/

/• tfet lensth of free memarv */

/• after the BSS segment */

/* */

/* cowpute high end of available*/

/• meniD rv ♦/

/♦ Leaue sone extra room in Mew */

/* Clear out auailable Memory #/

/* with NULL byte ualues */

/* first Ions of Parameter blK */

/* Sets the address of the FCB */

If the Load is Successful

Set the Default DMfi address

Call flssemblv Code to push

the base paäe addressi the

return address« and the

address you wish ta Jump tu

if (bdo5<PCMLDF .B.LPB) z~ 0)

i

bdosfSETDMA .(baspai + DMA_QFFBETMi

push<) !

eise

errorlPGMLDF)5

Listing B-2. (continued)

m DIGITAL RESEARCH'"

B-7

B Transient Program Load Example CP/M-68K Programmer's Guide

eise

error(OPEN)i

error(flas)

int flaSi

bdos(CQN-OUTrCR)S

bdos(CON_DUT»LF>!

if(flas == OPEN)

bdos<PRINTSTRtopenmss)5

eise

bdos(PRINTSTR»loadmsS)!

bdos(REBOOT>(lon*)Ö> i

>

main()

bdosiREBOOT•<lonS>O)5

#♦##♦###«♦#########*##♦♦##•####*♦*♦##♦#♦♦♦#♦•#»##****♦#♦#♦

« *

• Assemblv LanSuade Module Needed to *

• Assist 'C code to Load a Prosram into the TPA *

• *

Make All these labeis GLOBAL

.dlobl -bdos

.Slobl _LPB

.Slobl _1ouad r

.«lobl -hiadr

.slobl _baspa<

»slobl -usrstk

• srlobl -flaas

.ilobl _TPAB

.slobl -low

.Slobl _hi*h

.slobl -start

• Slobl .openf ile

.slobl -push

•Slobl -main

Cet the address of the base pase

Listing B-2. (continued)

B-8

M DIGITAL RESEARCH"

CP/M-68K Programmer's Guide B Transient Program Load Example

—Start:

*

*

*

bdos:

#

#

push:

link

move

Jsr

.1

Call the

move

move

t rap

rts

Push

iW

.1

aG »*O

8(a6) r-(sp)

openfile

BDOS

4<5P> >dO

G(sp) ,dl

«2

the needed ad

movea »

Moue

move

.1

.1

1 usrstk ta7

baspaä >al

al i-(5p)

«link and allocate

#pu5h the address of the base

»Jump to 'C oode to open the file

» main>-(sp)

move.1 B(al)»-(sp>

rts

DATA

i data

. euen

«Set the BDOS function number

#Set the BDOS Parameter

«call the 6D0S

♦ return

*set up the user Stack pointer

#det address of user base

*push base paäe address

*push return address

*push address to Jump to

»Jump to neu prodram

Listing B-2. (continued)

m DIGITAL RESEARCH"

B-9

B Transient Program Load Example CP/M-68K Programmer's Guide

Load Parameter BlocK

_LPB:

lowadr:

*

hiadr:

«

baspag:

us rstk:

__f laas:

*

*

*

_TPAB:

low:

hiah:

.ds.l

.ds.l

.ds.l

.ds.l

.ds.l

. de. w

TPA Pa

.euen

.dc.w

.ds.l

.ds.l

1

1

1

1

1

0

rai

0

1

1

♦FCE address of ftcsthw fil?

♦Lö-j bcuridarv of -:rea in which

«to load prosram

*Hi3n boundarv of area in .^hich to

♦ 'o load pro9raiii

•Base Fase address of icaded Frosram

«loaded proaram's initial stacK pointer

♦Load Frodram funetion control flass

END of Assembly Lanäuade Code

.end

Listing B-2. (continued)

End ofAppendix B

E DIGITAL RESEAROf"

B-10

Appendix C

Base Page Format

Table C-l shows the format of the base page. The base page describes a program's

environment. The Program Load Function (59) allocates space for a base page when

this funaion is invoked to load an executable command file. For more details, on the

Program Load Function and command files, refer to the appropriate sections in this

manual.

Table C-l. Base Page Format: Offsets and Contents

Offset

0000 - 0003

0004 - 0007

0008 - 000B

000C - 000F

0010 - 0013

0014 - 0017

0018 - 001B

001C - 001F

0020 - 0023

0024 - 0024

Contents

Lowest address of TPA (from LPB)

1 + Highest address of TPA (from LPB)

Starting address of the Text Segment

Length of Text Segment (bytes)

Starting address of the Data Segment (initialized data)

Length of Data Segment

Starting address of the bss (uninitialized data)

Length of bss

Length of free memory after bss

Drive from which the program was loaded

m DIGITAL RESEARCH™

C-l

C Base Page Format CP/M-68K Programmer's Guide

Table C-l. (continued)

Offset

0025 - 0037

0038 - 005B

005C-007F

0080 - OOFF

Contents

Reserved, unused

2nd parsed FCB from Command Line

Ist parsed FCB from Command Line

Command Tail and Default DMA Buffer

End ofAppendix C

C-2

m DIGITAL RESEARCTT"

Appendix D

Instruction Set Summary

This appendix contains two tables that describe the assembler instruction set distri-

buted with CP/M-68K. Table D-l summarizes the assembler (AS68) instruction set.

Table D-2 lists variations on the instruction set listed in Table D-l. For details on specific

instructions, refer to Motorola's 16-Bit Microprocessor User's Manual, third edition,

MC68000UM(AD3).

Table D-l. Instruction Set Summary

Instruction

abcd

add

and

asl

asr

bcc

bchg

bdr

bra

bset

bsr

btst

chk

dr

cmp

dbcc

divs

divu

Description

AddDecimal with Extend

Add

LogicalAND

Arithmetic Shift Left

Arithmetic Shift Right

Branch Conditionally

BitTestand Change

BitTestand Clear

Branch Always

Branch Test and Set

Branch to Subroutine

Bit Test

Check Register AgainstBounds

Clear Operand

Compare

Test Condition, Decrement and Branch

Signed Divide

Unsigned Divide

DIGITAL RESEARCH™

D-l

D Instruction Set Summary CP/M-68K Programmer's Guide

Table D-l. (continued)

Instruction

eor

exg

ext

jmp

jsr

lea

link

lsl

isr

move

movem

movep

muls

mulu

nbcd

neg

nop

no

or

pea

reset

rol

ror

roxl

roxr

rte

rtr

rts

Description

Exclusive Or

Exchange Registers

Sign Extend

Jump

Jump to Subroutine

Load Effective Address

Unk Stack

Logical Shirt Left

Logical Shirt Right

Move

Move Multiple Registers

Move Peripheral Data

Signed Multiply

Unsigned Multiply

Negate Decimal with Extend

Negate

No Operation

Ones Complement

Logical OR

Push Effective Address

ResetExternal Devices

Rotate LeftwithoutExtend

Rotate RightwithoutExtend

Rotate Leftwith Extend

Rotate Rightwith Extend

Return from Exception

Return and Restore

Return from Subroutine

D-2

52 DIGITAL RESEARCH"

CP/M-68K Programmer's Guide D Instruction Set Summary

Table D-l. (continued)

Instruction

sbcd

scc

stop

sub

swap

tas

trap

trapv

tst

unlk

Description

Subtract Decimal with Extend

Set Conditional

Stop

Subtract

Swap Data Register Halves

Testand Set Operand

Trap

Trap on Overflow

Test

Unlink

m DIGITAL RESEARCH™

D-3

D Instruction Set Summary CP/M-68K Programmer's Guide

Table D-2. Variations of Instruction Types

Instruction

add

and

cmp

eor

move

neg

or

Variation

add

adda

addq

addi

addx

and

andi

anditoccr

anditosr

cmp

cmpa

cmpm

cmpi

eor

eori

eoritoccr

eori to sr

move

movea

moveq

movetoccr

movetosr

movefromsr

movetousp

neg

negx

or

ori

oritoccr

oritosr

Description

Add

Add Address

Add Quick

Add Immediate

AddwithExtend

LogicalAND

ANDImmediate

AND Immediate to Condition Code

AND Immediate to Status Register

Compare

Compare Address

Compare Memory

Compare Immediate

Exdusive OR

Exdusive OR Immediate

ExdusiveImmediate to Condition Codes

Exdusive OR Immediate to

Condition Codes

Move

MoveAddress

Move Quick

Moveto Condition Codes

Moveto Status Register

Movefrom Status Register

Moveto UserStack Pointer

Negate

Negate with Extend

Logical OR

ORImmediate

OR Immediate to Condition Codes

OR Immediate to Status Register

D-4

3E DIGITAL RESEARCH™

CP/M-68K Programmer's Guide D Instrucdon Set Summary

TableD-2. (continued)

Instruction

sub

Variation

sub

suba

subi

subq

subx

Description

Subtract

Subtract Address

Subtract Immediate

Subtract Quick

Subtract with Extend

End ofAppendix D

10 DIGITAL RESEARO-T

D-5

Appendix E

Error Messages

This appendix lists the error messages returned by the internal components of

CP/M-68K and by the CP/M-68K programmer's Utilities. The sections are arranged

alphabetically by the name of the internal component or Utility. The error messages are

listed alphabetically within each section, with explanations and suggested user responses.

E.1 AR68 Error Messages

The CP/M-68K Archive Utility, AR68, returns two types of fatal error messages:

diagnostic and logic. Both types of fatal error messages are returned at the console as

they occur.

E.l.l Fatal Diagnostic Error Messages

The AR68 errors are listed in Table E-l in alphabetic order with explanations and

suggested user responses.

Table E-l. AR68 Fatal Diagnostic Error Messages

Message Meaning

filename not in archive file

The object module indicated by the variable filename is not in the

library. Check the filename before you reenter the command line.

cannot create filename

The drive code for the file indicated by the variable filename is

invalid, or the disk to which AR68 is writing is füll. Check the drive

code. If it is valid, the disk is füll. Erase unnecessary files, if any, or

insert a new disk before you reenter the command line.

DIGITAL RESEARCH"

E-l

E.1 AR68 Error Messages CP/M-68K Progranuner's Guide

Table E-l. (conrinued)

Message Meaning

cannot open filename

The file indicated by the variable filename cannot be opened

because the filename or the drive code is incorrect. Check the drive

code and the filename before you reenter the command line.

invalid Option f last: x

The symbol, letter, or number in the command line indicated by the

varible x is an invalid Option. Refer to the section of this manual on

AR68 for an explanation of the command line options. Specify a valid

Option and reenter the command line.

not archiue format: filename

The file indicated by the variable filename is not a library. Ensure

that you are using the correct filename before you reenter the com

mand line.

not obJect file: filename

The file indicated by the variable filenameis not an object file, and

cannot be added to the library. Any h'le added to the library must be

an object file, Output by the assembler, AS68, or the Compiler. Assem-

ble or compile the file before you reenter the AR68 command line.

one and onlv one of DRTWX f laas requi red

The AR68 command line requires one of the D, R, T, W, or X

commands, but not more than one. Reenter the command line with

the correct command. Refer to the section of this manual on AR68

for an explanation of the AR68 commands.

filenamenot in library

The object module indicated by the variable filename is not in the

library. Ensure that you are requesting the filename of an existing

object module before you reenter the command line.

E-2
DIGITAL RESEARCH"

CP/M-68K Programmer's Guide E.1 AR68 Error Messages

Table £-1. (continued)

Message Meaning

Read error on filename

The file indicated by the variable filename cannot be read. This

message means one of three things: the file listed at filename is

corrupted; a hardware error has occurred; or when the file was

created, it was not correctly written by AR68 due to an error in the

internal logic of AR68.

Cold start the System and retry the Operation. If you receive this error

message ag'ain, you must erase and recreate the file. Use your backup

file, if you maintained one. If the error reoccurs, check for a hardware

error. If the error persists, contact the place you purchased your

System for assistance. You should provide the following information:

■ Indicate which version of the operating System you are using.

■ Describe your system's hardware configuration.

■ Provide sufficient information to reproduce the error. Indicate

which program was running at the time the error occurred. If

possible, you should also provide a disk with a copyof theprogram.

teiop file write error

The disk to which AR68 was writing the temporary file is füll. Erase

unnecessary files, if any, or insert a new disk before you reenter the

command line.

usaäe: AR68 DRTUXCAVHF D:] COPMOD] ARCHIVE 0BM0D1 C0BM0D2,,,][>f ilespec]

This message indicates a syntax error in the command line. The correct

format for the command line is given, with the possible options in

brackets. Refer to the section in this manual on AR68 for a more

detailed explanation of the command line.

S) DIGITAL RESEARCH"

E-3

E.l AR68 Error Messages CP/M-68K Programmer's Guide

Table E-l. (continued)

Message Meaning

Write error on filename

The disk to which AR68 is writing the file indicated by the variable

filename is füll. Erase unnecessary files, if any, or insert a new disk

before you reenter the command line.

E.1.2 AR68 Internal Logic Error Messages

This section lists messages indicating fatal errors in the internal logic of AR68. If you

receive one ofthese messages, contact the place you purchased your System for assistance.

You should provide tHe following information:

1. Indicate which Version of the operating System you are using.

2. Describe your system's hardware configuration.

3. Provide sufficient information to reproduce the error. Indicate which program

was running at the time the error occurred. If possible, you should also provide

a disk with a copy of the program.

cannot reopen filename

seek error on library

Seek error on tempname

Unable to re-create-library is in filename

Note: for theabove error, Unab 1 e to re-create--library is infilename,

you should rename the temporary file indicated by the variable filename. AR68 used

the library to create the temporary file and then deleted the library in order to replace

it with the updated temporary file. This error occurred because AR68 cannot write the

temporary file back to the original location. The entire library is in the temporary file.

E-4
DIGITAL RESEARCH"

CP/M-68K Programmer's Guide E.2 AS68 Error Messages

E.2 AS68 Error Messages

The CP/M-68K assembler, AS68, returns both nonfatal, diagnostic error messages

and fatal error messages. Fatal errors stop the assembly of your program. There are two

types of fatal errors: user-recoverable fatal errors and fatal errors in the internal logic

ofAS68.

E.2.1 AS68 Diagnostic Error Messages

Diagnostic messages report errors in the syntax and context of the program being

assembled without interrupting assembly. Refer to the Motorola 16-Bit Microprocessor

User's Manual for a füll discussion of the assembly language syntax.

Diagnostic error messages appear in the following format:

&C line no. error message text

The ampersand (&) indicates that the message comes from AS68. The "line no.M

indicates the line in the source code where the error occurred. The "error message text"

describes the error. Diagnostic error messages are printed at the console after assembly,

followed by a message indicating the total number of errors. In a printout, they are

printed on the line preceding the error. The AS68 diagnostic error messages are listed

in Table E-2 in alphabetic order.

Table E-2. AS68 Diagnostic Error Messages

Message Meaning

line no« bacKward assidnment to *

The assignment Statement in the line indicated illegally assigns the

location counter (*) backward. Change the location counter to a

forward assignment and reassemble the source file.

& line no« bad use of symbol

A symbol in the source line indicated has been defined as both global

and common. A symbol can be either global or common, but not both.

Delete one of the directives and reassemble the source file.

DIGITAL RESEARCH~

E-5

E.2 AS68 Error Messages CP/M-68K Programmer's Guide

Table E-2. (continued)

Message Meaning

& line no« constant required

An expression on the line indicated requires a constant. Supply a

constant and reassemble the source file.

& line no» end Statement not at end of source

The end Statement must be at the end of the source code. The end

Statement cannot be followed by a comment or more than one carriage

return. Place the end Statement at the end of the source code, followed

by a Single carriage return only, and reassemble the source file.

& line no» illegal addressins mode

The instruction on the line indicated has an invalid addressing mode.

Provide a valid addressing mode and reassemble the source file.

& line no» illegal constant

The line indicated contains an illegal constant. Supply a valid constant

and reassemble the source file.

& line no» illegal expr

The line indicated contains an illegal expression. Correct the expres

sion and reassemble the source file.

& line no. illeäal external

The line indicated illegally contains an external reference to an 8-bit

quantity. Rewrite the source code to define the reference locally or

use a 16-bit reference and reassemble the source file.

& line no. illegal fortitat

An expression or instruction in the line indicated is illegally formatted.

Examine the line. Reformat where necessary and reassemble the

source file.

& line no. illegal index resister

The line indicated contains an invalid index register. Supply a valid

register and reassemble the source file.

£-6
DIGITAL RESEARCH1"

CP/M-68K Programmer's Guide E^ AS68 Error Messages

Table E-2. (continued)

Message Meaning

& line no. illegal relative address

An addressing mode specified is not valid for the instruction in the

line indicated. Refer to the Motorola 16-Bit Microprocessor User's

Manual for valid register modes for the specified instruction. Rewrite

the source code to use a valid mode and reassemble the file.

& line no« illegal shift count

The instruction in the line indicated shifts a quantity more than 31

times. Modify the source code to correct the error and reassemble the

source file.

& line no. illegal size

The instruction in the line indicated requires one ofthe following three

size specifications: b (byte), w (word), or 1 (longword). Supply the

correct size specification and reassemble the source file.

& line no« illegal strinä

The line indicated contains an illegal string. Examine the line. Correct

the string and reassemble the source file.

& line no« illegal text delimiter

The text delimiter in the line indicated is in the wrong format. Use

Single quotes ('text')or double quotes (" t e x t") to delimit the

text and reassemble the source file.

& line no« illegal 8-bit displacement

The line indicated illegally contains a displacement larger than 8-bits.

Modify the code and reassemble the source file.

& line no« illedal 8-bit immediate

The line indicated illegally contains an immediate Operand larger than

8-bits. Use the 16- or 32-bit form of the instruction and reassemble

the source file.

DIGITAL RESEARCH™

E-7

E.2 AS68 Error Messages CP/M-68K Programmer's Guide

Table E-2. (continued)

Message Meaning

1ine no♦ illeäal 16-bit displacement

The line indicated illegally contains a displacement larger than 16-bits.

Modify the code and reassemble the source file.

& line no. illegal 16-bit immediäte

The line indicated illegally contains an immediate Operand larger than

16-bits. Use the 32-bit form of the instruction and reassemble the

source file.

line no» inualid data list

One or more entries in the data list in the line indicated is invalid.

Examine the line for the invalid entry. Replace it with a valid entry

and reassemble the source file.

& line no« invalid first Operand

The first Operand in an expression in the line indicated is invalid.

Supply a valid Operand and reassemble the source file.

line noi inualid instruction lendth

The instruction in the line indicated requires one of the following three

size specifications: b (byte), w (word), or 1 (longword). Supply the

correct size speciflcation and reassemble the source file.

line no« invalid label

A required Operand is not present in the line indicated, or a label

reference in the line is not in the correct format. Supply a valid label

and reassemble the source file.

line no» invalid opcode

The opcode in the line indicated is nonexistent or invalid. Supply a

valid opcode and reassemble the source file.

line no« invalid second Operand

The second Operand in an expression in the line indicated is invalid.

Supply a valid Operand and reassemble the source file.

35 DIGITAL RESEARCH*"

E-8

CP/M-68K Programmer's Guide E.2 AS68 Error Messr

Table E-2. (continued)

Message Meaning

& line not label redefined

This message indicates that a label has been defined twice. The second

definition occurs in the line indicated. Rewrite the source code to

specify a unique label foreach definition and reassemble the source file.

& line noi Mi ss in

An expression in the line indicated is missing a right parenthesis.

Supply the missing parenthesis and reassemble the source file.

& line no< no label for Operand

An Operand in the line indicated is missing a label. Supply a label and

reassemble the source file.

& line no» opcode redefined

A label in the line indicated has the same mnemonics as a previously

specified opcode. Respecify the label so that it does not have the same

spelling as the mnemonic for the opcode. Reassemble the source file.

line no« reäister requi red

The instruction in the line indicated requires either a source or desti-

nation register. Supply the appropriate register and reassemble the

source file.

& line no* relocation error

An expression in the line indicated contains more than one externally

defined global symbol. Rewrite the source code. Either make one of

the externally defined global Symbols a local symbol, or evaluate the

expression within the code. Reassemble the source file.

& line no« symbol reiuired

A Statement in the line indicated requires a symbol. Supply a valid

symbol and reassemble the source file.

DIGITAL RESEARCH™

E-9

E.2 AS68 Error Messages CP/M-68K Programmer's Guide

Table E-2. (continued)

Message Meaning

& line noi undefined symbol in equate

One of the Symbols in the equate directive in the line indicated is

undefined. Define the symbol and reassemble the source file.

& line no. undefined symbol

The line indicated contains an defined symbol that has no been de-

clared global. Either define the symbol within the module or define it

as a global symbol and reassemble the source file.

E.2.2 User-recoverable Fatal Error Messages

The fatal error messages for AS68 are described in Table E-3. When an error occurs

because the disk is füll» AS68 creates a partial file. You should erase the partial file to

ensure that you do not try to link it.

Table E-3. User-recoverable Fatal Error Messages

Message Meaning

& cannot create init: ASG8SYMB.DAT

AS68 cannot create the initialization file because the drive code is

incorrect or the disk to which it was writing the file is füll. If you used

the -S switch to redirect the symbol table to another disk, check the

drive code. If it is correct, the disk is füll. Erase unnecessary flies, if

any, or insert a new disk before you reinitialize AS68. Erase the partial

file that was created on the füll disk to ensure that you do not try to

link it.

& expr opstk ouerflow

erations for

reassemble

pstk oue rf1ow

An expression in the line indicated contains too many operations i

the operations Stack. Simplify the expression before you reasseml

the source code.

& expr tree overflow

The expression tree does not have space for the number of terms in

one of the expressions in the indicated line of source code. Rewrite

the expression to use fewer terms beforeyou reassemble the source file.

E-10
DIGITAL RESEARCH™

CP/M-68K Programmer's Guide E.2 AS68 Error Messages

Table £-3. (continued)

Message Meaning

I/O error on loader Output file

The disk to which AS68 was writing the loader Output file is füll. AS68

wrote a partial file. Erase unnecessary files, if any, or insert a new disk

and reassemble the source file. Erase the partial file that was created

on the füll disk to ensure that you do not try to link it.

& I/O write error on it file.

The disk to which AS68 was writing the intermediate text file is füll.

AS68 wrote a partial file. Erase unnecessary files, if any, or insert a

new disk and reassemble the source file. Erase the partial file that was

created on the füll disk to ensure that you do not try to link it.

fic it read error itoffset= no.

The disk to which AS68 was writing the intermediate text file is füll.

AS68 wrote a partial file. The variable Itoffset = no« indicates

the first zero-relative byte number not read. Erase unnecessary files,

if any, or insert a new disk and reassemble the source file. Erase the

partial file that was created on the füll disk to ensure that you do

not try to link it.

& ObJect file write error

The disk to which AS68 was writing the object file is füll. AS68 wrote

a partial file. Erase unnecessary files, if any, or insert a new disk and

reassemble the source file. Erase the partial file that was created on

the füll disk to ensure that you do not try to link it.

& ouerflow of external table

The source code uses too many externally defined global symbols for

the size ofthe external symbol table. Eliminate some externally defined

global symbols and reassemble the source file.

& Read Error On Intermediate File: ASXXXXn

The disk to which AS68 was writing the intermediate text file

ASXXXX is füll. AS68 wrote a partial file. The variable n indicates

the drive on which ASXXXX is located. Erase unnecessary files, if

any, or insert a new disk and reassemble the source file. Erase the

partial file that was created on the füll disk to ensure that you do not

try to link it.

IS DIGITAL RESEARCH™

E-ll

E.2 AS68 Error Messages CP/M-68K Programmer's Guide

Table E-3. (continued)

Message Meaning

& svftibo 1 table overflow

The program uses too many symbols for the Symbol table. Eliminate

some symbols before you reassemble the source code.

& Unable to open file filename

The source filename indicated by the variable filename is invalid

or, has an invalid drive code or user number. Check the filename, drive

code, and user number. Respecify the command line before you

reassemble the source file.

Unable to open input file

The filename in the command line indicated does not exist, or has an

invalid drive code or user number. Check the filename, drive code,

and user number. Respecify the command line before you reassemble

the source file.

& Unable to open temporär/ file

Invalid drive code or the disk to which AS68 was writing is füll. Check

the drive code. If it is correct, the disk is füll. Erase unnecessary files,

if any, or insert a new disk before you reassemble the source file.

Unable to read init file: ASGBSYMB*DAT

The drive code or user number used to specify the inidalization file is

invalid or the assembler has not been initialized. Check the drive code

and user number. Respecify the command line before you reassemble

the source file. If the assembler has not been initialized, refer to the

section in this manual on AS68 for instructions.

Write error on init file: ASG8SYMB.DAT

The disk to which AS68 was writing the initialization file is füll. AS68

wrote a partial file. Erase unnecessary files, if any, or insert a new disk

and reassemble the source file. Erase the partial file that was created

on the füll disk to ensure that you do not try to link it.

E-12
m DIGITAL RESEARCH™

CP/M-68K Programmer's Guide E.2 AS68 Error Messages

Table E-3. (continued)

Message Meaning

& write error on it file

The disk to which AS68 was writing the intermediate text is füll. AS68

wrote a partial file. Erase unnecessary files, if any, or insert a new disk.

Erase the partial file that was created on the füll disk to ensure that

you do not try to Unk it. Reassemble the source file.

E.2.3 Internal Logic Error Messages

This section lists messages indicating fatal errors in the internal logic of AS68. If you

receive one of these messages, contact the place you purchased your System for assistance.

You should provide tlie following information.

1. Indicate which version of the operating System you are using.

2. Describe your system's hardware configuration.

3. Provide sufficient information to reproduce the error. Indicate which program

was running at the time the error occurred. If possible, you should also provide

a disk with a copy of the program.

Errors:

& doitrd: buffer botch pitix=nnn itbuf=nnn end=nnn

& doitwr: it buffer botch

& invalid radix in oconst

& i♦t« oye rflow

& it sync error itty=nnn

& seek error on it file

& outword: bad rlf1a

m DIGITAL RESEARCH"

E-13

E.3 BDOS Error Messages CP/M-68K Programmer's Guide

£.3 BDOS Error Messages

The CP/M-68K Basic Disk Operating System, BDOS, returns fatal error messages at

the console. The BDOS error messages are listed in Table E-4 in alphabetic order with

explanations and suggested user responses.

Table E-4. BDOS Error Messages

Message Meaning

CP/M Disk chan^e error on driue x

The disk in the drive indicated by the variable x is not the same disk

the System logged in previously. When the disk was replaced you did

not enter a CTRL-C to log in the current disk. Therefore, when you

attempted to write to, erase, or rename a file on the current disk, the

BDOS set the drive Status to read-only and warm booted the System.

The current disk in the drive was not overwritten. The drive Status

was returned to read-write when the System was warm booted. Each

time a disk is changed, you must type a CTRL-C to log in the new disk.

CP/MDisK file error: filename is Read-Only.

Do you wan t to: Chan de it to read/write (C) t

or Abort (A>?

You attempted to write to, erase, or rename a file whose Status is

' Read-Only. Specify one of the options enclosed in parentheses. If you

specify the C Option, the BDOS changes the Status of the file to

read-write and continues the Operation. The Read-Only protection

previously assigned to the file is lost.

If you specify the A Option or a CTRL-C, the program terminates and

CPM-68K returns the System prompt.

E-14
E DIGITAL RESEARCH™

CP/M-68K Programmer's Guide E.3 BDOS Error Messages

Table £-4. (continued)

Message Meaning

CP/M Disk read error on driue x

Do you want to: Abort (A)» Retry (R)»

or Continue with bad data (O?

BDOS. This message indicates a hardware error. Specify one of the

options enclosed in parentheses. Each opdon is described below.

Option Action

A or CTRL-C Terminates the Operation and CP/M-68K returns the

System prompt.

R Retries the Operation. If the retry fails, the System

reprompts with the opdon message.

\

Ignores the error and condnues program execudon.

Be careful if you use this opdon. Program execudon

should not be continued for some types of programs.

For example, if you are updating a data base and

receive this error but continue program execution,

you can corrupt the index fields and the entire data

base. For other programs, continuing program

execution is recommended. For example, when you

transfer a long text file and receive an error because

one sector is bad, you can continue transferring the file.

After the file is transferred, review the file, and add the

data that was not transferred due to the bad sector.

CP/M DisK select error on driue x

Do you want to: Abort (A)t Retry (R)

There is no disk in the drive or the disk is not inserted correcdy. Ensure

that the disk is securely inserted in the drive. If you enter the R Option,

the System retries the Operation. If you enter the A opdon or CTRL-C

the program terminates and CPM-68K returns the System prompt.

DIGITAL RESEARCH™

E-15

E.3 BDOS Error Messages CP/M-68K Programmcr's Guide

Table £-4. (continued)

Message Meaning

CP/M Disk select error on driue x

The disk selected in the command line is outside the ränge A through P.

CP/M-68K can support up to 16 drives, lettered A through P. Check

the documentation provided by the manufacturer to find out which

drives your particular System configuration supports. Specify the

correct drive code and reenter the command line.

E-16

DICrTAL RESEARCH1"

CP/M-68K Programmer's Guide E.4 BIOS Error Messages

£.4 BIOS Error Messages

The CP/M-68K BIOS error messages are listed in Table E-5 in alphabetic order with

explanations and suggested user responses.

Table £-5. BIOS Error Messages

Message Meaning

BIOS ERROR -- DISK X NOT SUPPORTED

The disk drive indicated by the variable X is not supported by the

BIOS. TheBDOS Supports a maximum of 16 drives, lettered A through

P. Check the manufacturer's documentation for your System configu-

ration to find out which of the BDOS drives your BIOS implements.

Specify the correct drive code and reenter the command line.

BIOS ERROR -- Invalid Disk Status

The disk Controller returned unexpected or incomprehensible Infor

mation to the BIOS. Retry the Operation. If the error persists, check

the hardware. If the error does not come from the hardware, it is

caused by an error in the internal logic of the BIOS. Contact the place

you purchased your System for assistance. You should provide the

following Information.

1. Indicate which Version of the operating System you are using.

2. Describe your system's hardware configuration.

3. Provide sufficient Information to reproduce the error. Indicate

which program was running at the time the error occurred. If

possible, you should also provide a disk with a copy of the program.

£.5 CCP Error Messages

The CP/M-68K Console Command Processor, CCP, returns two types of error mes

sages at the console: diagnostic and internal logic error messages.

'S DIGITAL RESEARCH™ —

E-17

£.5 CCP Error Messages CP/M-68K Programmer's Guide

E.5.1 Diagnostic Error Messages

The CCP error messages are listed in Table E-6 in alphabetic order with explanations

and suggested user responses.

Table E-6. CCP Diagnostic Error Messages

Message Meaning

bad relocation Information bits

This message is a result of a BDOS Program Load Function (59) error.

It indicates that the file specified in the command line is not a valid

executable command file, or that the file has been corrupted. Ensure

that the file is a command file. Section 3 of this manual deschbes the

format of a command file. If the file has been corrupted, reassemble

or recompile the source file, and relink the file before you reenter the

command line.

File alreadv exists

This error occurs during a REN command. The name specified in the

command line as the new filename already exists. Use the ERA com

mand to delete the existing file if you wish to replace it with the

newfile.If not, select another filename and reenter the REN command

line.

insufficient Memory or bad file header

This error could result from one of three causes:

1. The file is not a valid executable command file. Ensure that you

are requesting the correct file. This error can occur when you enter

the filename before you enter the command for a Utility. Check the

appropriate section of this manual or the CP/M-68K Operating

System User's Guide for the correct command syntax before you

reenter the command line. If you are trying to run a program when

this error occurs, the program file may have been corrupted.

Reassemble or recompile the source file and relink the file before

you reenter the command line.

2. The program is too large for the available memory. Add more

memory boards to the System configuration, or rewrite the pro

gram to use less memory.

E-18

31 DIGITAL RESEARCH"

CP/M-68K Programmer's Guide E.5 CCP Error Messages

Table E-6. (continued)

Message Meaning

The program is linked to an absolute location in memory that

cannot be used. The program must be made relocatable, or linked

to a usable memory location. The BDOS Get/Set TPA Limits

Function (63) returns the high and low boundaries of the memory

space that is available for loading programs.

No file

The filename specified in the command line does not exist. Ensure that

you use the correct filename and reenter the command line.

No wildcard filenames

The command specified in thecommand line does not acceptwildcards

in file specifications. Retype the command line using a specific

filename.

read error on proSram load

This message indicates a premature end-of-file. The file is smaller than

the header Information indicates. Either the file header has been

corrupted or the file was only partially written. Reassemble, or recom-

pile the source file, and relink the file before you reenter the command

line.

SUB file not found

The file requested either does not exist, or does not have a filetype of

SUB. Ensure that you are requesting the correct file. Refer to the

section on SUBMIT in the CP/M-68K Operating System User's Guide

for information on creating and using submit files.

Svntax: REN newfi1e=o1dfi1e

The syntax of the REN command line is incorrect. The correct syntax

is given in the error message. Enter the REN command followed by

a space, then the new filename, followed immediately by an equals

sign (=) and the name of the file you want to rename.

SD DIGITAL RESEARCH"

E-19

E.5 CCP Error Messages CP/M-68K Programmer's Guide

Table £-6. (continued)

Message Meaning

Too many aröuwents: aräuwent?

The command line contains too many arguments. The extraneous

arguments are indicated by the variable artfument. Refer to the

CP/M-68K Operating System User's Guide for the correct syntax for

the command. Specify only as many arguments as the command

syntax allows and reenter the command line. Use a second command

line for the remaining arguments, if appropriate.

User » ranäe is £0-15]

The user number specified in the command line is not supported by

the BIOS. The valid ränge is endosed in the Square brackets in the

error message. Specify a user number between 0 and 15 (decimal)

when you reenter the command line.

E.5.2 CCP Internat Logic Error Messages

The foUowing message indicates an undefined failure of the BDOS Program Load

Function (59).

Prodram Load Error

If you receive this message, contaa the place you purchased your System for assistance.

You should provide the foUowing information.

1. Indicate which version of the operating system you are using.

2. Describe your system's hardware configuration.

3. Provide sufficient information to reproduce the error. Indicate which program

was running at the rime the error occurred. If possible, you should also provide

a disk with a copy of the program.

£.6 DDT-68K Error Messages

The CP/M-68K debugger, DDT-68K, returns two types of error messages: nonfatal

diagnostic error messages and fatal errors in the internal logic of DDT-68K.

E DIGITAL RESEARO-P

E-20

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

E.6.1 Diagnostic Error Messages

Diagnostic error messages are returned at the console as the error occurs. The DDT-

68K error messages are listed in Table E-7 in alphabetic order with explanations and

suggested user responses.

Table E-7. DDT-68K Diagnostic Error Messages

Message Meaning

Bad or nonexistent RAM at HEX no«

This error occurs in response to a Set (S), Set Word (SW), or Set

Longword (SL) command. The message indicates one oftwo things.

1. The memory location at HEX n o ♦ is read-only, an I/O port, or

nonexistent. Use another location.

2. The memory location is damaged. Check the hardware.

Bad relocat ion b i ts

This message is returned from the BDOS Program Load Function (59),

and means one of two things.

1. The command file has been corrupted. Rebuild the file. Reassemble

or recompile the source file, and relink the file before you reenter

the DDT-68K command line.

2. The file is linked to an absolute location in memory that is already

occupied by DDT-68K. Link the fileto another location: DDT-68K

occupies approximately 20K ofmemory, and resides at the highest

addresses within the ITA. The recommended location for linking

your file is the base address of the TPA + 100H. BDOS Function

63, Get/Set TPA Limits, returns the high and low boundaries of

the TPA.

DIGITAL RESEARCH™

E-21

£.6 DDT-68K Error Messages CP/M-68K Programmer's Guide

Table E-7. (continued)

Message Meaning

Cannot create file

This error occurs during a Write (W) command. The disk to which

DDT-68K is writing has no more directory space available: in effect,

the disk is füll. If you have another drive available, reenter the Write

(W) command and direct the file to the disk on that drive. If you do

not have another drive available» you must exit DDT-68K (and lose

the contents of memory). Erase unnecessary files, if any, or insert a

new disk.

Cannot open file

This error occurs during a Read (R) command. It indicates an incor-

rect user number, drive code, or filename. Check the user number,

drive code, and filename before you reenter the command line.

Cannot open prodram file

This message occurs in response to a Load for Execution (E) com

mand. It indicates an incorrect user number, drive code, or filename.

Check the user number, drive code, and filename before you reenter

the command line.

ERROR» no prodram or file loaded«

This error message occurs in response to a Value (V) command when

you specify the command but no file is loaded. Load a file before

you reenter the V command. The file can be loaded with a Load for

Execution (E) or Read (R) command, or by specifying the filename

when you invoke DDT-68K.

File too bis -- read truncated

This message occurs during a Read (R) command when the file being

read is too large to fit in memory. DDT-68K reads only the portion

of the file that can be read into the existing memory. To debug this

program, additional memory boards must be added to the System

configuration.

DIGITAL RESEARCH"

E-22

CP/M-68K Programmer's Guide E.6 DDT-68K Error Messages

Table E-7. (continued)

Message Meaning

\ File write error

The disk to which DDT-68K is writing is füll or the disk contains a

bad sector. Retry the command. If the error persists, and you have

another disk drive available, redirect the Output to the disk on that

drive. If you do not have another drive available, you must exit

DDT-68K. Use the STAT command to check the space on the disk.

If it is füll, erase unnecessary files, if any, or insert a new disk. Because

the contents of memory are lost when you exit DDT-68K, you must

reload the file in memory. If the disk was not füll, it has a bad sector.

You should replace the disk.

**illeöal size fold

This error occurs during a List (L) command. The size field of the

instruction being disassembled has an illegal value. Use a Display

(D) command to display the location of the error. This error could

be caused by one of three things:

N

1. The memory location being disassembled does not contain an

instruction. Ensure that the area selected is an instruction. If not,

reenter the L command with a correct location.

2. The size field of the instruction has been corrupted. Use the

debugging commands in DDT-68K to look for an error that causes

the program to overwrite itself. Refer to the section in this manual

on DDT-68K for a complete description of the DDT-68K com

mands and options.

3. An invalid instruction was generated by the Compiler or assembler

used to create the program. Recompile or reassemble the source

file before you reinvoke DDT-68K.

O DIGITAL RESEARCH™

E-23

E.6 DDT-68K Error Messages CP/M-68K Programmer's Guide

Table E-7. (continued)

Message Meaning

Insufficient memory or bad file header

This message occurs in response to a Load for Execution (E) com

mand. The error could be caused by one of three things:

1. The System you are using does not have enough memory available.

Ensure that the program and DDT-68K fit into the TPA. Exit

DDT-68K. Use the SIZE68 Utility to display the amount of space

your program occupies in memory. DDT-68K is approximately

20K bytes. The BDOS Get/Set TPA Limits Function (63) returas

the high and low boundaries of the TPA. If you do not have

sufficient space in the TPA to execute your command file and

DDT-68K simultaneously, additional memory boards must be

added to the System configuration.

2. The file is not a command file or has a corrupted header. If the

command file does not run, but you are sure that your memory

space is adequate, use the R command to look at the file and

check the format. You may be trying to debug a file that is not

a command file. If it is a command file, the header may have been

corrupted. Reassemble or recompile the source file before you

reenter the E command line. If the error persists, it may be caused

by an error in the internal logic of DDT-68K. Contact the place

you purchased your System for assistance. You should provide

the following Information:

a. Indicate which version ofthe operating System you are using.

b. Describe your system's hardware configuration.

c Provide sufficient Information to reproduce the error. Indicate

which program was running at the time the error occurred. If

possible, you should also provide a disk with a copy of the

program.

£-24
D DIGITAL RESEARCH™

CP/M-68K Programmer's Guide £.6 DDT-68K Error Messages

Table E-7. (continued)

Message Meaning

3. The command file you are debugging is linked to an absolute

location in memory that is already occupied by DDT-68K.

DDT-68K is approximately 20K bytes, and usually resides in the

highest addresses of the TPA. The recommended location for

linking your file is the base address of theTPA + 100H. The BDOS

Get/Set TPA Limits Function (63) returns the high and low boun-

daries of the TPA.

Re ad error

This message may indicate one of three things. Try the Operation

again. If the error persists, try the responses indicated:

1. A write error at the time the file was created. You must recreate

the file. If the error reoccurs, or if you cannot write to the disk, the

disk is bad.

2. A bad disk. Use PIP or COPY to copy the file from the bad disk to

a new disk. Any files that cannot be copied must be recreated or

replaced from backup files. Discard the damaged disk.

3. A hardware error. If the error persists, check your hardware.

unknownopcode

This error occurs in response to a List (L) command if the memory

location being disassembled does not contain a valid instruction. The

error may have been caused by one of three things:

1. You gave the L command the wrong address. Reenter the L com

mand with the correct address.

2. The file is not a command file. Ensure that the file you spedfy is a

command file and reenter the L command.

DIGITAL RESEARCH"

E-25

£.6 DDT-68K Error Messages CP/M-68K Programmer's Guide

Table E-7. (continued)

Message Meaning

3. The command file has been corrupted. Reassemble or recompile

the source file before you reread it into memory with a Load for

Execution (£) or Read (R) command, as appropriate. If the problem

persists, use the debugging commands in DDT-68K to look for an

error in the program that causes it to overwrite itself. Refer to the

section in this manual on DDT-68K for a complete description of

the DDT-68K commands and options.

£.6.2 DDT-68K Internat Logic Error Messages

This section lists fatal errors in the infernal logic of DDT-68K. If you receive one of

these messages, contact the place you purchased your System for assistance. You should

provide the following information.

1. Indicate which version of the operating System you are using.

2. Describe your system's hardware configuration.

3. Provide sufficient information to reproduce the error. Indicate which program

was running at the time the error occurred. If possible, you should also provide

a disk with a copy of the program.

Errors:

illegal instruction forwat *

Unknown proäram load error

E.7 DUMP Error Messages

DUMP returns fatal, diagnostic error messages at the console. The DUMP error

messages are listed in Table E-8 in alphabetic order with explanations and suggested

user responses.

E-26
®jDIGITAL RESEARCH™

CP/M-68K Programmer's Guide E.7 DUMP Error Messages

Table E-8. DUMP Error Messages

Message Meaning

Unable to open filename

Either the drive code for the input file indicated by the variable

filename is incorrect, or the filename is misspelled. Check the

filename and drive code beforeyou reenter theDUMPcommand line.

Usa*e: duwp C-shhhhhh] file

The command line syntax is incorrect. The correct syntax is given in

the error message. Specify the DUMP command and the filename. If

you want to display the contents of the file from a specific address in

the file, specify the -S Option followed by the address. Refer to the

section in this manual on the DUMP Utility for a discussion of the

DUMP command line and options.

£.8 LO68 Error Messages

The CP/M-68K Linker, LO68, returns two types of fatal error messages: diagnostic

and logic. Both types of fatal error messages have the following format:

: error message text

The colon (:) indicates that the error message comes from LO68. The "error message

text" describes the error.

E.8.1 Fatal Diagnostic Error Messages

A fatal diagnostic error prevents your program from linking. When the error is caused

by a füll disk, erase the partial file that LO68 created on the disk that received the error

to ensure that you do not use the file. The LO68 diagnostic errors are listed in Table E-9

in alphabetic order with explanations and suggested user responses.

DIGITAL RESEARCH™

E-27

E.8 LO68 Error Messages CP/M-68K Programmcr's Guide

Table E-9. LO68 Fatal Diagnostic Error Messages

Message Meaning

duplicate definition in p»filename

The symbol indicated by the variable p is defined twice. The variable

filename indicatesthefileinwhichtheseconddefinitionoccurred.

Rewrite the source code. Provide a unique definition for each symbol

and reassemble or recompile the source code before you relink the file.

file format error: filename

The file indicated by the variable filename is either not an object

file or the file has been corrupted. Ensure that the file is an object file,

Output by the assembler or Compiler. Reassemble or recompile the file

before you relink it.

File Format Error: Invalid symbol fla*s = flasfs

LO68 does not recognize the symbol flags indicated by the variable

f 1 a ä s. The file LO68 read is either not an object file or it has been

corrupted. Ensure that the file is an object file, Output by the assembler

or Compiler. Reassemble or recompile the file before you relink it.

File Format Error: invalid relocation fla3 in filename

The contents of the file indicated by the variable filename are in-

correctly formatted. The file either is not an object file or has been

corrupted. Ensure that the file is an object file, Output by the assembler

or Compiler. If the file is an object file but this error occurs, the file

has been corrupted. Reassemble or recompile the file before you re

link it.

File Format Error: no relocation bits in filename

The file indicated by the variable filename either is not an object

file or has been corrupted. Ensure that the file is an object file, Output

by the assembler or Compiler. If the file is an object file but this error

occurs, then the file has been corrupted. Reassemble or recompile the

file before you relink it.

: Illegal option

The opoon in the command line indicated by die variable p is invalid.

Supply a valid Option and relink.

83 DIGITAL RESEARCH1"

E-28

CP/M-68K Programmer's Guide E.8 LO68 Error Messages

Table E-9. (continued)

Message Meaning

: Inm a1i d 1o BB aräument 1 i s t

This message indicates format errors or invalid options in die com-

mand line. Examine the command line to locate the error. Correct the

error and relink.

Output file write error

The disk to which LO68 is writing is füll. Erase unnecessary files, if

any, or insert a new disk before youxeenter the LO68 command line.

\

read error on file: filename

The object file indicated by the variable filename does not have

enough bytes. The file either is incorrectly formatted or has been

corrupted. This error is commonly caused when the input to LO68 is

a partially assembled or compiled object file. The assembler, AS68,

and some Compilers create partial object files when they receive the

disK füll abort message while assembling or compiling a file.

Ensure that the file is a complete object file. Reassemble or recompile

the file before you relink it.

symbol table ouerflow

The object code contains too many Symbols for the size of the symbol

table. Rewrite the source code to use fewer Symbols. Reassemble or

recompile the source code before you relink the file.

Unable to create filename

Either the Output file indicated by filename has an invalid drive

code, or the disk to which LO68 is writing is füll. Check the drive

code. If it is correct, the disk is füll. Erase unnecessary files, if any, or

insert a new disk before you reenter the LO68 command line.

unable to open filename

The filename indicated by the variable filename is invalid, or the

file does not exist. Check the filename before you reenter the LO68

command line.

DIGITAL RESEARCH'"

E-29

E.8 LO68 Error Messages CP/M-68K Programmer's Guide

Table E-9. (continued)

Message Meaning

: Unable to open tewporary file: filename

Either the file, indicated by filename, has an invalid drive code,

speeified by the t Option, or the disk to which LO68 is writing is füll.

Check the drive code. If it is correct, the disk is füll. Erase unnecessary

files, if any, or insert a new disk before you reenter the LO68 command

line.

Undefinedsymbol(s)

The symbol or Symbols which are listed one per line on the lines

following the error message are undefined. Provide a valid definition

and reassemble the source code before you reenter the LO68 command

line.

£.8.2 LO68 Intemal Logic Error Messages

This section Iists messages indicating fatal errors in the intemal logic of LO68. If you

receive one ofthese messages, contact the place you purchased your System for assistance.

You should provide the following Information:

1. Indicate which Version of the operating System you are using.

2. Describe your system's hardware configuration.

3. Provide sufficient informarion to reproduce the error. Indicate which program

was running at the time the error occurred. If possible, you should also provide

a disk with a copy of the program.

33 DIGITAL RESEARCH"

E-30

CP/M-68K Programmer's Guide E.8 LO68 Error Messages

Errors:

: asänext botch

: finalwr: text size error

: relatiue address ouerflow at Ix in sn

: seeK error on file filename

: short address overflow in filename

: unable to reopen filenaine

E.9 NM68 Error Messages

NM68 retums fatal diagnostic error messages at the console. The NM68 error

messages are listed in Table E-10 in alphabetic order with expianations and suggested

user responses.

S DIGITAL RESEARCH™

E-31

£.9 NM68 Error Messages CP/M-68K Programmer's Guide

Table £-10. NM68 Error Messages

Message Meaning

File format error: filename

The input file indicated by the variable filename is neither an

objea file nor a command file. This message can also indicate a

corrupted file. NM68 prints the symbol table of an objea file or a

command file. Ensure that the file is one of these types of file. If the

file is an objea or command file and you receive this message, die file

is corrupted. Rebuild the file with the Compiler or assembler. If the

file is a command file, relink it. Reenter the NM68 command line.

read error on file: filename

The input file indicated by the variable filename is truncated.

Rebuild the file with the Compiler or assembler. If the file is a command

file, relink it. Reenter the NM68 command line.

unable to open filename

The filename indicated by the variable filename is incorrect.

Check the spelling of the filename and reenter the command line.

Usade: nm68 obJectfile

The command line syntax is incorrect. Use the syntax given in the

error message and reenter the command line.

E.10 RELOC Error Messages

The Relocation Utility (RELOC) returns fatal error messages at the console. RELOC

error messages are listed in Table E-11 in alphabedc order with explanadons and

suggested user responses.

E-32

S DIGITAL RESEARCH"

CP/M-68K Programme^ Guide E.10 RELOC Error Messages

Table E-l 1. RELOC Error Messages

Message Meaning

create filename

Either the drive code for the Output file indicated by the variable

filename is incorrect, or the disk to which RELOC is writing is

füll. Check the drive code. If it is correct, the disk is füll. Erase

unnecessary flies, if any, or insert a new disk before you reenter the

RELOC command line.

Cannot open file

The input file indicated by the variable filename does not exist.

Ensure that you type the correct filename when you reenter the

RELOC command line.

Cannot re-open filename

This error message indicates a hardware error. Check the hardware

for errors. This error most often occurs in the disk, disk drive, or

memory.

file format error: filename

This error occurs because the first word in the header record of the

command file must contain the value 601AH and the file must contain

relocation bits. If your file does not meet diese criteria, you cannot

use RELOC.

1. The file indicated by the variable filename is not a command

file with contiguous program segments (the first word in the header

record is 60IAH). If the file is an object file, link it before you

reenter the RELOC command line.

2. The file does not have relocation bits because it is already linked

to an absolute location. Use the original source file that contains

relocation bits with RELOC.

Illegal base address=hex no.

The odd base address indicated by the variable hex no« is invalid

under CP/M-68K. Base addresses must be even. Specify an even base

address and reenter the RELOC command line.

E DIGITAL RESEARCH™

E-33

E.10 RELOC Error Messages CP/M-68K Programmer's Guide

TableE-ll. (continued)

Message Meaning

Illeäal Option:

The Option specified for the RELOC command must be -b. The invalid

Option is indicated by the variable x . Replace the invalid Option with

-b and reenter the RELOC command line.

Illegal reloc = x at address

This message may indicate one of two things:

1. The command file is truncated or corrupted. RELOC recognized

the error because the relocation value indicated by the variable x

is invalid. The variable address indicates the location in memory

of the invalid relocation value. Rebuild the file. Reassemble or

recompile, and relink the file before you reenter the RELOC com

mand line.

2. The file has no relocation bits. Use the original source code with

relocation bits and try again.

Read error on filename

The input file indicated by the variable filenawe is truncated or

corrupted. Rebuild the file. Reassemble, or recompile, and relink the

file before you reenter the RELOC command line.

lG-bit ouerflow at address

The address indicated by the variable address cannot contain a

16-bit quantity. Source code that uses 16-bit offsets must fit in the

first 64K bytes of memory. BDOS Function 63, Get/Set TPA Limits,

returns the high and low boundaries of the memory available for

loading programs. SIZE68 displays the amount of memory space a

program occupies. Use the Get/Set TPA Limits Function and SIZE68

to ensure that the program fits in the first 64K of memory. If the

program does not fit, you must rewrite the source code to use 32-bit

offsets.

. B DIGITAL RESEARCH"

E-34

CP/M-68K Progratnmer's Guide E.10 RELOC Error Messages

Table E-11. (continued)

Message Meaning

UsaSe: reloc -bhhhhhh input ouput

where hhhhhh is new base address

input is relocatable file

Output is absolute file

This message indicates a syntax error in the RELOC command line.

The correct syntax is given in the error message. Retype the command

line with the correct syntax. Refer to the section in this manual on the

RELOC Utility for more detailed Information on the command line

syntax.

Write error on filename Offset = x data = x error = x

The disk to which RELOC is writing is füll. Erase unnecessary files,

if any, or insert a new disk before you reenter the RELOC command

line.

E.11 SENDC68 Error Messages

SENDC68 returns two types of fatal error messages: diagnostic and internal logic

error messages.

® DIGITAL RESEARCH*

E-35

E.11 SENDC68 Error Messages CP/M-68K Programmer's Guide

£.11.1 Diagnostic Error Messages

The SENDC68 diagnostic error messages are listed in Table E-12 in alphabetic order

with explanations and suggested user responses.

Table E-12. SENDC68 Diagnostic Error Messages

Message Meaning

file forwat error: filename

The file indicated by the Variable filename is not a command file.

The file input to SENDC68 must be a command file, Output by the

linker (LO68). Ensure that the file specified is a command file.

read error on file: filename

The file indicated by the variable filename is truncated. Rebuild

the file by recompiling or reassembling, and relink it before you reenter

the SENDC68 command line.

unable to create filename

This message indicates an invalid drive code for the Output file indi

cated by the variable filenawe.lt can also mean that the disk to

which SENDC68 is writing is füll. Check the drive code. If it is correct,

the disk is füll. Erase unnecessary files, if any, or insert a new disk

before you reenter the SENDC68 command line.

unable to open filename

The input file indicated by the variable filename does not exist.

Check the filename and retype the SENDC68 command line.

Usaae: sende68 C-] comrnandfile Coutputfile]

This message indicates a syntax error in the SENDC68 command line.

The correct syntax is given in the error message. Retype the command

line using the correct syntax.

E.11.2 SENDC68 Internal Logic Error Messages

The following is a fatal error in the internal logic of SENDC68.

seeK error on file filename

E-36

15! DIGITAL RESEARCH"

CP/M-68K Programmer's Guide E.11 SENDC68 Error Messages

If you receive this message, contact the place you purchased your System for assistance.

You should provide the following information.

1. Indicate which Version of the operating System you are using.

2. Describe your system's hardware configuration.

3. Provide sufficient information to reproduce the error. Indicate which program

was running at the time the error occurred. If possible, you should also provide

a disk with a copy of the program.

E.12 SIZE68 Error Messages

SIZE68 returns fatal, diagnostic error messages at the console. The SIZE68 error

messages are listed in Table E-13 in alphabetic order with explanations and suggested

user responses.

Table E-13. SIZE68 Error Messages

Message Meaning

File format error: filename

The file indicated by the variable filename is neither an object file

nor a command file. SIZE68 requires either an object file, Output by

the assembler or the Compiler, or a command file, Output by the linker.

Ensure that the file specified is one of these and reenter the SIZE68

command line.

read error on filename

The file indicated by the variable filename is truncated. Rebuild

the file. Reassemble or recompile, and relink the source file before you

reenter the SIZE68 command line.

unable to open filename

Either the drive code is incorrect, or the file indicated by the variable

filename does not exist. Check the drive code and filename.

Reenter the SIZE68 command line.

End ofAppendix E

m DIGITAL RESEARCH"1 ■

E-37

Appendix F

NewFunctions andImplementation Changes

CP/M-68K has six new Basic Disk Operating System (BDOS) functions and additional

implementation changes in the BDOS functions and data structures that differ from

other CP/M Systems.

Table F-l. New BDOS Functions

Function

Get Free Disk Space

ChainTo Program

Flush Buffers

Set Exception Vector

Set Supervisor State

Get/SetTPA Limits

Number

46

47

48

61

62

63

m DIGITAL RESEARCH"

F-l

F.l BDOS Funcrion and Data Structure Changes CP/M-68K Programmer's Guide

F.l BDOS Function and Data Structure Changes

Implementation changes in CP/M-68K BDOS functions and data structures are de-

scribed in the following table:

Table F-2.

BDOSFunction

Return Version Number

ResetDisk System

Open File

Get Disk Parameters

BDOS Function Implementation Changes

Number

12

14

15

31

Implementation Change

Contains the Version number2022H indicat-

ingCP/M-68K Version 1.1.

Does not login disk drive Awhen it resets the

disk System.

Opens a file only at extent 0, the base extent.

Returns a copy ofthe Disk ParameterBlock

(DPB).

Table F-3. BDOS Data Structure Implementation Changes

Structure Implementation Change

Base Page

File Control Block

Additional infonnation has been added. The base page

is no longer located at a fixed address. Appendix C

outlines the structure of the base page.

The byte sequence for the Random Record Field has

changed. The most significant byte (rO) is first and the

least significant byte (r2) is last.

F-2
m DIGITAL RESEARCH"

CP/M-68K Programmer's Guide F.2 BDOS Functions Not Supported by CP/M-68K

F.2 BDOS Functions Not Supported by CP/M-68K

The following table contains functions and commands supported by other CP/M

Systems, but that are not supported by CP/M-68K.

Table F-4. BDOS Functions Not Supported by CP/M-68K

\

BDOS Function

Get Address of Allocation Vector

Set DMA Base +

Get DMA Base +

Get Maximum Memory*

Get Absolute Memory*

Allocate Absolute Memory*

Free Memory*

Free All Memory*

Number

27

51

52

53

54

55

56

57

+ The 68000 microprocessor does not have a

segmented architecture. Therefore, functions

involving segment registers are not relevant to

CP/M-68K.

* CP/M-68K does not have memory management

functions.

In addition to the above BDOS Functions, CP/M-68K does not support the Assemble (A)
command in DDT-68K.

End ofAppendix F

Ei DIGITAL RESEARCH™

F-3

Index

[3, 9-3
l }, 9-2
..., 9-2

\, 9-3

A command (AR68), 7-5

absolute

file, 7-9

origin directive (org), 5-8

access operating system, 1-2

additional serial I/O

functions, 4-53

address, 1-8

errors, 4-72

overflow, 9-6

ambiguous file reference, 7-17

AR68, 1-3, 7-1, 9-1

commands, 7-3

error messages, E-l

errors, 7-8

archive Utility (AR68),

1-3, 7-1

AS68, 1-3, 9-1

assembly language, 5-10

error messages, E-5

instruction set, D-l

invoking, 5-1, 5-10

ASCII

characters, 5-4

character strings, 5-4

file, 1-4

notation, 1-3

assembler (AS68) Operation,

1-3, 5-1

base segment, 5-4

overlay programs, 9-2

assembly language

directives, 5-3

extensions, 5-12

auxiliary

input, 4-53, A-l

Output, 4-54, A-l

B

backslash, 9-3

-Baddress (L068), 6-3

bad vector error, 4-72

base address, 9-5

base page, 1-2, 2-2, 4-69, C-l

Basic Disk Operating System

(BDOS), 1-1, 2-5

.bass directive, 5-12

batch files, 9-3

BDOS, 1-1

functions, 4-1

direct console I/O, 4-47

error messages, E-14

invoking, 4-3

organization o£, 4-4

Output console function, 4-4

Parameters, 4-3

system reset function, (0), 2-4

BIOS, 1-1

error messages, E-l6

functions, A-l

Parameter block (BPB), 4-65

return code, 4-65

block storage segment (bss),

1-8, 5-4, 9-2, 9-12

braces, 9-2

brackets, 9-4

branch instructions, 5-12

bsr instruction, 5-12

bss, 1-8, 5-4, 9-2, 9-12

bss directive, 5-12

built-in commands, 2-1

bus errors, 4-72

CCP, 1-1, 4-69

CDPB, 4-40

chain to program function, 4-63

CHAINED, 9-5

character I/O functions, 4-44

close file function, 4-12, 4-23

cold start loader, 1-1

command

file format, 1-2, 3-1

tail, 2-3

command line, options, 9-4

nest, 9-5

COMMON directive, 9-2

common directive (comm),

5-4, 5-13

compute file size function, 4-28

conditional branching, 5-3

conditional directives, 5-7

Conin function, A-l

Index-1

Conout function, A-l

console buffer, 4-50

Console Command Processor

(CCP), 1-1, 2-5

console i/o functions,
4-45, 4-46

Const function, A-l

CP/M-68K,
architecture, 1-2

commands, 1-3, 1-4

default memory model, 2-5

file specification, 1-6

operating System, 1-1

terminology, 1-8

text editor, 1-4

CPM.SYS file, 1-1

CPU, State of, 8-11

current default disk numbers,

4-37

D (Display) command (DDT-68K),

8-3

D AR68 command, 7-3

-Daddress (L068), 7-3

data

directive, 5-4, 5-12

segment, 1-8

DDT-68K, 1-3

command

Conventions, 8-1

summary, 8-2

error messages, E-20

Operation, 8-1

terminating, 8-2

debugger, 1-3

decimal, 5-4

default location, 5-3

define

constant directive (de), 5-4

storage directive (ds), 5-5

symbols, 5-4

delete file function, 4-15

deliniter characters, 1-6

DIR*, 1-4

direct BIOS call function, 4-65

direct console I/O function,
4-47

DIRS*, 1-4

disk

change error, 4-7, 4-38

directory, 4-13

file error, 4-7, 4-9

read error, 4-7

select error, 4-7

write error, 4-7

DMA buffer, 4-21

DPB, 4-40

drive

code, 9-15

default (active), 5-3

functions, 4-33

select code, 1-6

DUMP, 1-3, 7-1, 7-8

DUMP

error messages, E-26

invoking, 7-8

Output, 7-8

B

ED, 1-4

E DDT-68K Load for Execution

command, 8-4

editing control functions, 4-50

ellipsis, 9-2

end directive, 5-5

ende directive, 5-5

equal sign, 9-3

equate directive (equ), 5-6
ERA*, 1-4

error messages

assembler, 5-3

AR68 fatal, E-l

AS68, E-5

BDOS, E-14

BIOS, E-16

DDT-68K, E-20

DUMP, E-26

LO68, E-27

NM68, E-31

RELOC, E-32

SENDC68, E-35

SIZE 68, E-37

errors,

address, 4-72

AR68, 7-8

bus, 4-72

even directive, 5-6

Index-2

exception

functions, 4-70

handler, 4-71, 4-74

Parameter block (EPB), 4-71

vectors, 1-1, 2-5, 4-71

exiting transient prograras, 2-4

F DDT-68K Fill conunand, 8-5

-F L068 option, 5-13

file

absolute, 7-17

access functions, 4-4

attributes, 4-22, 4-23

Control Block (FCB), 24-5

listing, 5-3

input, 7-17

Output, 7-17

processing errors, 4-7

size, 4-28

structure, 1-1

System access, 1-2

filename

source, 5-3

listing, 5-3

filetype

default, 9-9

fields, 1-6

FIND Utility, 7-17

flush buffers function,

4-64, A-l

temporary, 9-7

free sector count, 4-43

function code, 4-67

functions

BDOS, 4-1

console, 4-44

root, 9-7

Read-Only vector function,

4-39

/set TPA limits, 4-75

•globl directive, 5-12

H

H DDT-68K Hexadecimal Math

comtoand, 8-6

header, 3-1

hexadecimal, 1-3, 5-4

horae function, A-l

hypen, 9-6

-I L068 Option, 6-2

I, DDT-68K Input Command Tail

command, 8-6

IGNORE, 9-6

INCLUDE, 9-6

I/O functions

byte, 4-55

character, 4-44

direct console, 4-47

init function, A-l

initial Stack pointer, 4-69

instruction set summary,

(AS68), D-l

invoking

AR68, 6-1

AS68, 5-10

BDOS functions, 4-3

DUMP, 7-8

RELOC, 7-11

SIZE68, 7-13

IOBYTE, 4-55

G DDT-68K Go command, 8-5

get

address of disk parameter

block, 4-40

console Status function, 4-52

disk free space function, 4-43

disk parameters function, 4-40

I/O byte function, 4-57, A-l
memory region table address,

A-l

or set user code, 4-62

jsr instruction, 5-12

L DDT-68K List command, 8-7

library file, 1-3, 9-1

line editing controls, 4-51

LINK68, 1-3, 9-1

command line options, 9-4

error messages, 9-11

linker (L068) Operation, 6-1

List

function, A-l

Output function, 4-55

Index-3

L068, 1-3

error messages, E-27

load parameter block (LPB),

4-67, 4-68

loading a program in memory,

2-2

LOCALS, 9-6

iogical
console device, 4-45,

4-50, 4-72

list device (LIST), 4-55

login vector, 4-36

longword, 1-8

M, DDT-68K Move command, 8-7

make file function, 4-19

inessage filename L068, 6-3

multiple programs, loading, 2-3

N

nibble, 1-8

NM68

error messages, E-31

Utility, 1-3

NOLOCALS, 9-6

object file, 1-3, 9-1

concatenate, 9-2

object filename option (L068),

6-3

object modules, 1-3, 9-1

offset directive, 1-8, 5-8

-0 L068 option, 6-2

op-codes, 5-3

open file function, 4-11,

4-23, 4-24

operands, 5-4

operating System access, 1-2

options, AR68, 7-3

global, 9-4

local, 9-4 •

overlay

area, 9-8

file format, 9-11

loader, 9-8

manager, 9-8

nested, 9-10

scheine, 9-9

static variables, 9-8

overlays, linking

producing, 9-8

page directive, 5-8

physical file size, 4-29

PIP, 1-4

print string function, 4-49

Printer switch, 4-46

program

common area, 5-4

control functions, 4-58

counter (PC), 8-5, 8-11

execution tracing of, 8-9

listing, 5-3

load function, 4-67, 4-69

load parameter block (LPB),

3-7

segments, 2-2, 3-1

overlayed, 9-5, 9-7

Programming

tools and commands, 1-2

Utilities, 7-1

R

R (Read) command

AR68, 7-4

DDT-68K, 8-8

random record field and

number, 4-24, 4-29

read

console buffer function, 4-50

error, 4-8

function, A-l

random function, 4-24

sequential function, 4-16

read-only bit, 4-39

register mask directive, 5-9

RELOC

error raessages, E-32

Utility, 1-3, 9-1

relocatable program, 9-4

format, 7-17

relocation

information, 3-6

Utility (RELOC), 1-3, 7-1,
7-9, 7-11

words, 3-8

REN*, 1-4

rename file function, 4-20

reset

disk System function, 4-34

drive function, 4-42

Index-4

resident system extensions

(RSXs), 4-73

return

current disk function, 4-37

fron subroutine (RTS), 4-69

login vector function, 4-36

version nutnber function, 4-60

root

file, 9-7

module, 9-8

-R L068 option, 6-1

RSX, 4-73

run-tiine library, 9-2

S, DDT-68K Set command, 8-8

S - record file, 7-17

search for first function, 4-13

search for next function, 4-14

section directive, 5-9

Sectran function, A-l

segment

block, 1-8

data, 1-8

text, 1-8

Seldsk function, A-l

select disk function, 4-35

SENDC68

error messages, E-35

Utility, 1-3, 7-1, 7-4, 7-17

serial I/O functions, 4-53

set

direct meraory access (DMA)

address, 4-21

exception vector, 4-71, A-l

file attributes, 4-22, 4-23

I/O byte, 4-58, A-l

random record, 4-30, 4-31

Supervisor State, 4-74

/Get user code, 4-62

Setdma function, A-l

Setsec function, A-l

Settrk function, A-l

shift instruction, 5-12

SIZE68

error messages, E-37

Output, 7-14

Utility, 1-3, 7-1

-S L068 option, 6-1

sparse files, 4-29

Start scroll, 4-46

static data, 9-8

Status register, 8-11

stop scroll, 4-46

SUBMIT*, 1-4, 9-3

Supervisor Stack and State,

4-74

SYMBOLS, 9-6

syntbol

table, 3-1, 3-4, 5-3, 9-7

printing of, 3-6

type, 3-7

system

control functions, 4-58

reset function, 4-59

Stack pointer, 8-11

State, 4-72

-Taddress L068, 6-2

T, DDT-68K Trace command, 8-9

T AR68 command, 7-6

tab characters, 4-45

TEMP FILES, 9-7

terminating DDT-68K, 8-2

text

directive, 5-9, 5-12

segment, 1-8

TEXTBASE, 9-7

TPAB parameters field, 4-76

transient

command, 2-1

program area (TPA), 4-75

programs, 1-2

exiting, 2-4

translator, 9-1

Trap 2 instruction, 4-4

TYPE*, 1-4

U

-Umodname L068 option, 6-2

U, DDT-68K Untrace command, 8-9

UNDEFINED, 9-7

user

number, 4-62, 1-4

Stack, 2-2

pointer, 8-11

USER*, 1-4

V DDT-68K Value command, 8-10

V AR68 option, 7-3, 7-5,

7-6, 7-7

vector number and values, 4-71

Index-5

Version

dependent programming, 4-60
numbers, 4-61

return, 4-60

Virtual file size, 4-29

W

W, Write command

AR68, 7-6

DDT-68K, 8-10

warm boot function, A-l

wildcards, 1-7, 4-11

word, 1-8

write

error, 4-7

function, A-l

protect disk function, 4-38

randon function, 4-26

seguential function,

4-17, 4-18

X, DDT-68K Examine CPU State

command, 8-11

X AR68 command, 7-7

-X L068 Option, 6-2

Z

-Zaddress L068, 6-2

Index-6

NOTES

>>.

Kj.

1015-2023-002

